Abstract

The three groups of fluorescent line spectra of Tb3+ in CaF2 “spectrum I” between the crystal-field split levels of the 5D4 and the 7F3, 7F4, and 7F5 free-ion states have been combined into energy-level schemes which tend to support a cubic crystal field symmetry and which give information on the crystal-field split-leve representations and energies to 5 cm−1 for a thin crystal.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Rabbiner, Phys. Rev. 132, 224 (1963). This analysis was for a thin crystal.
    [Crossref]
  2. I. V. Stepanov and P. P. Feofilov, Dokl. Akad. Nauk SSSR 4, 615 (1957) [English transl.: Soviet Phys.—Doklady 1, 350 (1956)].
  3. H. H. Theissing, P. Caplan, T. Ewanizky, and G. DeLhery, Appl. Opt. 2, 291 (1963).
    [Crossref]
  4. P. P. Geofilov, Opt. i Spektroskopiya 10, 142 (1961) [English transl.: Opt. Spectry. 10, 70 (1961)]; G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
    [Crossref]
  5. H. Bethe, Ann. Physik 3, 133 (1929).
    [Crossref]
  6. The Oh group has a center of symmetry and therefore electric dipole transitions are forbidden; thus, the symmetry may be cubic, close to Oh, if these are electric dipole transitions.
  7. K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
    [Crossref]
  8. M. J. Weber and R. W. Bierig, Phys. Rev. 134, A1492 (1964).
    [Crossref]
  9. B. G. Wybourne, J. Chem. Phys. 36, 2301 (1962).
    [Crossref]

1964 (1)

M. J. Weber and R. W. Bierig, Phys. Rev. 134, A1492 (1964).
[Crossref]

1963 (2)

N. Rabbiner, Phys. Rev. 132, 224 (1963). This analysis was for a thin crystal.
[Crossref]

H. H. Theissing, P. Caplan, T. Ewanizky, and G. DeLhery, Appl. Opt. 2, 291 (1963).
[Crossref]

1962 (2)

B. G. Wybourne, J. Chem. Phys. 36, 2301 (1962).
[Crossref]

K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
[Crossref]

1961 (1)

P. P. Geofilov, Opt. i Spektroskopiya 10, 142 (1961) [English transl.: Opt. Spectry. 10, 70 (1961)]; G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
[Crossref]

1957 (1)

I. V. Stepanov and P. P. Feofilov, Dokl. Akad. Nauk SSSR 4, 615 (1957) [English transl.: Soviet Phys.—Doklady 1, 350 (1956)].

1929 (1)

H. Bethe, Ann. Physik 3, 133 (1929).
[Crossref]

Bethe, H.

H. Bethe, Ann. Physik 3, 133 (1929).
[Crossref]

Bierig, R. W.

M. J. Weber and R. W. Bierig, Phys. Rev. 134, A1492 (1964).
[Crossref]

Caplan, P.

DeLhery, G.

Ewanizky, T.

Feofilov, P. P.

I. V. Stepanov and P. P. Feofilov, Dokl. Akad. Nauk SSSR 4, 615 (1957) [English transl.: Soviet Phys.—Doklady 1, 350 (1956)].

Geofilov, P. P.

P. P. Geofilov, Opt. i Spektroskopiya 10, 142 (1961) [English transl.: Opt. Spectry. 10, 70 (1961)]; G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
[Crossref]

Lea, K. R.

K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
[Crossref]

Leask, M. J. M.

K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
[Crossref]

Rabbiner, N.

N. Rabbiner, Phys. Rev. 132, 224 (1963). This analysis was for a thin crystal.
[Crossref]

Stepanov, I. V.

I. V. Stepanov and P. P. Feofilov, Dokl. Akad. Nauk SSSR 4, 615 (1957) [English transl.: Soviet Phys.—Doklady 1, 350 (1956)].

Theissing, H. H.

Weber, M. J.

M. J. Weber and R. W. Bierig, Phys. Rev. 134, A1492 (1964).
[Crossref]

Wolf, W. P.

K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
[Crossref]

Wybourne, B. G.

B. G. Wybourne, J. Chem. Phys. 36, 2301 (1962).
[Crossref]

Ann. Physik (1)

H. Bethe, Ann. Physik 3, 133 (1929).
[Crossref]

Appl. Opt. (1)

Dokl. Akad. Nauk SSSR (1)

I. V. Stepanov and P. P. Feofilov, Dokl. Akad. Nauk SSSR 4, 615 (1957) [English transl.: Soviet Phys.—Doklady 1, 350 (1956)].

J. Chem. Phys. (1)

B. G. Wybourne, J. Chem. Phys. 36, 2301 (1962).
[Crossref]

J. Phys. Chem. Solids (1)

K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
[Crossref]

Opt. i Spektroskopiya (1)

P. P. Geofilov, Opt. i Spektroskopiya 10, 142 (1961) [English transl.: Opt. Spectry. 10, 70 (1961)]; G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
[Crossref]

Phys. Rev. (2)

N. Rabbiner, Phys. Rev. 132, 224 (1963). This analysis was for a thin crystal.
[Crossref]

M. J. Weber and R. W. Bierig, Phys. Rev. 134, A1492 (1964).
[Crossref]

Other (1)

The Oh group has a center of symmetry and therefore electric dipole transitions are forbidden; thus, the symmetry may be cubic, close to Oh, if these are electric dipole transitions.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Fluorescence of Tb3+ in CaF2 spectrum I, thin crystal, 77° abs. The line numbers are identified in Table I. (A) Enlargements of spectrograms of subgroup A, two exposures; (B) enlargements of spectrograms of subgroup B, two exposures; (C) enlargements of spectrograms of subgroup C, two exposures; (D) spectrogram showing the relative positions and intensities of subgroups A, B, and C [wavelength mμ (approximate)]. In Fig. 1 (A), subgroup A, are shown two second-order mercury calibration lines, superscripted, (M1, M2) 3125.7 and 3131.5 Å at 6251.4 and 6263 Å, respectively. In Fig. 1(B), subgroup B, are shown two mercury calibration lines, superscripted at 5770 and 5790 Å (M3, M4). In Subgroup C, there is shown in Fig. 1 (C), a mercury calibration line superscripted at 5461 Å (M5). Line Nos. 25 and 26 appear to be a single line under M5 in spectrograms of Fig. 1 (C). A very weak line appeared, on spectrograms not shown, at 6047 Å; it was the second-order of a 3023.5-Å mercury line [wavelength mμ (approximate)].

Fig. 2
Fig. 2

Oh crystal-field energy-level scheme in accordance with fluorescence frequencies observed for spectrum I of Tb3+ in CaF2.

Tables (2)

Tables Icon

Table I Frequencies of fluorescent lines of Tb3+ in CaF2, spectrum I, obtained from Fig. 1 (exp) compared with those obtained from Fig. 2 (scheme) (cm−1).a

Tables Icon

Table II Crystal field splittings and allowed transitions in an Oh field for J=3, 4, and 5 states.a