Abstract

The effects of a moving line of light on the luminance threshold of a stationary target in its path have been compared for continuous and interrupted movement with three luminances of the moving line (2.0 to 0.023 ft-L), four speeds (17° to 170°/sec), and four widths of interruption of movement about the target position (0.13° to 3.43°). For both the continuous and interrupted movement the target threshold generally varied (a) with the luminance of the line divided by its speed, and (b) with the temporal interval between the presentation of the target and the arrival of the moving line at the target position. At short temporal intervals the rise in threshold with increasing luminance of the line was much greater than at long intervals. Although there were no substantial changes in the slopes of the functions, the point of maximum threshold rise was a function of speed. Both inhibitory and facilitative effects were magnified with very small interruptions of movement but decreased with larger interruptions.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Luria and P. A. Kolers, J. Opt. Soc. Am. 52, 1320A (1962).
    [Crossref]
  2. G. A. Fry, Am. J. Physiol. 108, 701 (1934).
  3. H. Pieron, J. Psychol. 32, 1 (1935).
  4. B. H. Crawford, Proc. Roy. Soc. (London) 134B, 283 (1947).
  5. M. Alpern, J. Opt. Soc. Am. 43, 648 (1953).
    [Crossref] [PubMed]
  6. R. Boynton and G. Kandel, J. Opt. Soc. Am. 47, 275 (1957).
    [Crossref] [PubMed]
  7. W. Battersby and I. Wagman, J. Opt. Soc. Am. 49, 752 (1959).
    [Crossref] [PubMed]
  8. P. A. Kolers, Vision Res. 2, 277 (1962).
    [Crossref]
  9. J. Lettvin, H. Maturana, W. McCulloch, and W. Pitts, Proc. IRE 47, 1040 (1959).
    [Crossref]
  10. D. Hubel and T. Wiesel, J. Physiol. (London) 160, 106 (1962).
  11. H. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957); J. Gen. Physiol. 42, 1241 (1959).
  12. W. R. MacKavey, S. H. Bartley, and C. Casella, J. Opt. Soc. Am. 52, 85 (1962).
    [Crossref] [PubMed]
  13. M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).
  14. Y. Legrand, Light, Colour and Vision (John Wiley & Sons, Inc., New York, 1957), p. 240.
  15. G. Fooks, E. Sweeney, and F. L. Dimmick, (June1957).
  16. P. A. Kolers, Vision Res. 3, 191 (1963).
    [Crossref]

1963 (1)

P. A. Kolers, Vision Res. 3, 191 (1963).
[Crossref]

1962 (4)

D. Hubel and T. Wiesel, J. Physiol. (London) 160, 106 (1962).

W. R. MacKavey, S. H. Bartley, and C. Casella, J. Opt. Soc. Am. 52, 85 (1962).
[Crossref] [PubMed]

S. M. Luria and P. A. Kolers, J. Opt. Soc. Am. 52, 1320A (1962).
[Crossref]

P. A. Kolers, Vision Res. 2, 277 (1962).
[Crossref]

1959 (3)

J. Lettvin, H. Maturana, W. McCulloch, and W. Pitts, Proc. IRE 47, 1040 (1959).
[Crossref]

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

W. Battersby and I. Wagman, J. Opt. Soc. Am. 49, 752 (1959).
[Crossref] [PubMed]

1957 (2)

H. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957); J. Gen. Physiol. 42, 1241 (1959).

R. Boynton and G. Kandel, J. Opt. Soc. Am. 47, 275 (1957).
[Crossref] [PubMed]

1953 (1)

1947 (1)

B. H. Crawford, Proc. Roy. Soc. (London) 134B, 283 (1947).

1935 (1)

H. Pieron, J. Psychol. 32, 1 (1935).

1934 (1)

G. A. Fry, Am. J. Physiol. 108, 701 (1934).

Alpern, M.

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

M. Alpern, J. Opt. Soc. Am. 43, 648 (1953).
[Crossref] [PubMed]

Bartley, S. H.

Battersby, W.

Boynton, R.

Casella, C.

Crawford, B. H.

B. H. Crawford, Proc. Roy. Soc. (London) 134B, 283 (1947).

David, H.

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

Dimmick, F. L.

G. Fooks, E. Sweeney, and F. L. Dimmick, (June1957).

Fooks, G.

G. Fooks, E. Sweeney, and F. L. Dimmick, (June1957).

Fry, G. A.

G. A. Fry, Am. J. Physiol. 108, 701 (1934).

Hartline, H.

H. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957); J. Gen. Physiol. 42, 1241 (1959).

Hubel, D.

D. Hubel and T. Wiesel, J. Physiol. (London) 160, 106 (1962).

Kandel, G.

Kolers, P. A.

P. A. Kolers, Vision Res. 3, 191 (1963).
[Crossref]

S. M. Luria and P. A. Kolers, J. Opt. Soc. Am. 52, 1320A (1962).
[Crossref]

P. A. Kolers, Vision Res. 2, 277 (1962).
[Crossref]

Legrand, Y.

Y. Legrand, Light, Colour and Vision (John Wiley & Sons, Inc., New York, 1957), p. 240.

Lettvin, J.

J. Lettvin, H. Maturana, W. McCulloch, and W. Pitts, Proc. IRE 47, 1040 (1959).
[Crossref]

Luria, S. M.

S. M. Luria and P. A. Kolers, J. Opt. Soc. Am. 52, 1320A (1962).
[Crossref]

MacKavey, W. R.

Maturana, H.

J. Lettvin, H. Maturana, W. McCulloch, and W. Pitts, Proc. IRE 47, 1040 (1959).
[Crossref]

McCulloch, W.

J. Lettvin, H. Maturana, W. McCulloch, and W. Pitts, Proc. IRE 47, 1040 (1959).
[Crossref]

Pieron, H.

H. Pieron, J. Psychol. 32, 1 (1935).

Pitts, W.

J. Lettvin, H. Maturana, W. McCulloch, and W. Pitts, Proc. IRE 47, 1040 (1959).
[Crossref]

Ratliff, F.

H. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957); J. Gen. Physiol. 42, 1241 (1959).

Sweeney, E.

G. Fooks, E. Sweeney, and F. L. Dimmick, (June1957).

Wagman, I.

Wiesel, T.

D. Hubel and T. Wiesel, J. Physiol. (London) 160, 106 (1962).

Am. J. Physiol. (1)

G. A. Fry, Am. J. Physiol. 108, 701 (1934).

J. Gen. Physiol. (2)

H. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957); J. Gen. Physiol. 42, 1241 (1959).

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

J. Opt. Soc. Am. (5)

J. Physiol. (London) (1)

D. Hubel and T. Wiesel, J. Physiol. (London) 160, 106 (1962).

J. Psychol. (1)

H. Pieron, J. Psychol. 32, 1 (1935).

Proc. IRE (1)

J. Lettvin, H. Maturana, W. McCulloch, and W. Pitts, Proc. IRE 47, 1040 (1959).
[Crossref]

Proc. Roy. Soc. (London) (1)

B. H. Crawford, Proc. Roy. Soc. (London) 134B, 283 (1947).

Vision Res. (2)

P. A. Kolers, Vision Res. 2, 277 (1962).
[Crossref]

P. A. Kolers, Vision Res. 3, 191 (1963).
[Crossref]

Other (2)

Y. Legrand, Light, Colour and Vision (John Wiley & Sons, Inc., New York, 1957), p. 240.

G. Fooks, E. Sweeney, and F. L. Dimmick, (June1957).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

A side view of the optical arrangement in the upper figure. The heavy black line P is the pendulum bob with its fixed FS and movable MS slits (also shown in front view in the lower figure) and the stationary slit SS behind it. Also shown are the light source LS, collimating lenses CL, heat filters HF, mirrors M, lenses L, neutral density filters ND, artificial pupil AP, viewing screen SC, and fixation light FL. Baffles B set the limits of the movement of the line projected on the screen.

Fig. 2
Fig. 2

Diagram of the viewing screen showing the location of the test stimulus (point 4) 4.29° to the left of the fixation light F and the eight positions of the moving line when the threshold of the target was measured. The separations between the points are shown in degrees visual angle. The line moved through 8.52° toward the fixation light.

Fig. 3
Fig. 3

The luminance threshold of the target as a function of its exposure time.

Fig. 4
Fig. 4

The threshold ratios RT as a function of the separation between the target and the moving line. Each horizontal set of graphs is for a different speed; each vertical set of graphs is for a different luminance. Each curve within a set is for a different width of interruption of movement: (0) no interruption; (1) 0.13°; (2) 0.72°; (3) 2.00°; (4) 3.43°. The spatial separation of the target and line is shown in degrees visual angle, and the equivalent temporal separation for the different speeds is shown on each graph. Negative times indicate that the target was presented before the line reached the position of the target.

Fig. 5
Fig. 5

The threshold ratios RT as a function of the temporal separation between target and moving line for continuous movement of the line.

Fig. 6
Fig. 6

The negative and positive intervals at which equal RT occurs. The negative interval has been subtracted from the positive interval to give the increment which must be added to the negative interval to give the time at which the equal RT is found. (A) the average of all speeds and luminances, (B) highest luminance averaged across speeds, (C) intermediate luminance averaged across speeds, and (D) lowest luminance averaged across speeds. The “0” function shows results for continuous movement, “1” for 0.13° baffle, “2” for 0.72° baffle.

Fig. 7
Fig. 7

Maximum threshold ratios as a function of the luminance of the moving line for continuous movement.

Fig. 8
Fig. 8

Maximum threshold ratios as a function of the luminance of the line divided by its speed for continuous movement.

Fig. 9
Fig. 9

Threshold ratios at synchrony as a function of the luminance of the moving line for various widths of interruption of movement: (1) 0.13°, (2) 0.72°, (3) 2.00°, (4) 3.43°.

Fig. 10
Fig. 10

A three-dimensional representation of the results for interrupted movement showing the threshold ratios as a function both of (a) the temporal interval between the interruption of movement and the presentation of the target and (b) the luminance of the moving line divided by its speed.

Fig. 11
Fig. 11

Separation of the line and target at which maximum threshold ratio is obtained as a function of the speed of the line (spatial separation ●——●; temporal separation ○– – – – ○).

Fig. 12
Fig. 12

The average separation of line and target at which the maximum threshold ratio occurs as a function of the speed of the line (○——○ 2.0 ft-L; +– – – –+ 0.22 ft-L; ● · · · · ● 0.023 ft-L).