Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Namioka, in Space Astrophysics, edited by W. Liller (McGraw-Hill Book Company, Inc., New York, 1961), p. 228.
  2. R. Tousey, Appl. Opt. 1, 679 (1962).
    [Crossref]
  3. McPherson Instrument Corporation, Acton, Massachusetts.
  4. Jarrell-Ash Company, Newtonville 60, Massachusetts

1962 (1)

Namioka, T.

T. Namioka, in Space Astrophysics, edited by W. Liller (McGraw-Hill Book Company, Inc., New York, 1961), p. 228.

Tousey, R.

Appl. Opt. (1)

Other (3)

McPherson Instrument Corporation, Acton, Massachusetts.

Jarrell-Ash Company, Newtonville 60, Massachusetts

T. Namioka, in Space Astrophysics, edited by W. Liller (McGraw-Hill Book Company, Inc., New York, 1961), p. 228.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Rowland circle for in-focus (solid circle) and out-of-focus (dashed circle) condition where α=angle of incidence, β1=in-focus angle of diffraction, 2R=diameter of Rowland circle, d=displacement of grating from in-focus condition, G′=grating position after displacement d from in-focus position, En=fixed entrance slit, Ex=fixed exit slit.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β 2 + d [ ( 1 / 2 P 1 ) + ( a / 2 Q 1 ) ] = β 1 ,
λ λ 0 + [ ( e cos β 1 ) / ( 2 R ) ] [ ( 1 / cos α 1 ) + ( α / cos β 1 ) ] d ,
δ λ 0 = e L 2 R cos β 2 [ a cos β 2 cos β 1 cos ( π - ( α + β 1 ) + δ / 2 ) - 1 ] e L cos β 2 2 R ( cos β 2 cos β 1 - 1 ) ,
δ λ s / δ λ 0 S / L ( cos β 2 - cos β 1 ) .
F = [ S / L ] { cos β 2 - cos β 1 [ cos ( π - ( α + β 1 ) + 1 2 δ ) / cos ( π - ( α + β 1 ) + γ + 1 2 δ ) ] } [ S / L ] [ ( cos β 2 - cos β 1 ) - 1 ] .