Abstract

The intensity–time relationship at threshold of the human eye has been investigated with special attention to temporal-summation effects and Bloch’s Law. The four parameters selected for this study include (a) narrow-band spectral stimuli of different dominant wavelengths, (b) foveal and peripheral retinal locations, (c) several stimulus sizes, and (d) light and dark surrounds. The results, obtained with three subjects, show that the intensity–time relationship is dependent upon the wavelength of the spectral stimulus when a large (45′) foveal stimulus is employed. No significant wavelength dependency was indicated with smaller (4.5′) foveal stimuli and varying stimulus diameters in the periphery. Data taken with a dark surround exhibited more temporal summation than that taken with a light surround. Results are discussed in relation to evidence for differently sized receptive fields for the red and blue cones and for the rod receptors.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Bloch, Compt. Rend. Soc. Biol. 2, 493 (1885).
  2. H. K. Hartline, J. Cellular Comp. Physiol. 5, 229 (1934).
    [Crossref]
  3. C. H. Graham and R. Margaria, Am. J. Physiol. 113, 299 (1935).
  4. H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
    [Crossref]
  5. E. Davy, J. Opt. Soc. Am. 42, 937 (1952).
    [Crossref] [PubMed]
  6. G. E. Long, J. Opt. Soc. Am. 41, 743 (1951).
    [Crossref] [PubMed]
  7. H. B. Barlow, J. Physiol. 141, 337 (1958).
  8. E. Baumgardt and B. Hillmann, J. Opt. Soc. Am. 51, 340 (1961).
    [Crossref] [PubMed]
  9. R. O. Rouse, J. Opt. Soc. Am. 42, 626 (1952).
    [Crossref] [PubMed]
  10. H. Guttmann, J. Opt. Soc. Am. 53, 642 (1963).
    [Crossref] [PubMed]
  11. E. Baumgardt, J. Gen. Physiol. 31, 269 (1948).
  12. C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 555 (1939).
    [Crossref]
  13. G. S. Brindley, J. Physiol. 124, 400 (1954).

1963 (1)

1961 (1)

1958 (1)

H. B. Barlow, J. Physiol. 141, 337 (1958).

1954 (1)

G. S. Brindley, J. Physiol. 124, 400 (1954).

1952 (2)

1951 (1)

1948 (1)

E. Baumgardt, J. Gen. Physiol. 31, 269 (1948).

1939 (1)

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 555 (1939).
[Crossref]

1936 (1)

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

1935 (1)

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 299 (1935).

1934 (1)

H. K. Hartline, J. Cellular Comp. Physiol. 5, 229 (1934).
[Crossref]

1885 (1)

A. M. Bloch, Compt. Rend. Soc. Biol. 2, 493 (1885).

Barlow, H. B.

H. B. Barlow, J. Physiol. 141, 337 (1958).

Baumgardt, E.

Bloch, A. M.

A. M. Bloch, Compt. Rend. Soc. Biol. 2, 493 (1885).

Brindley, G. S.

G. S. Brindley, J. Physiol. 124, 400 (1954).

Brown, R. H.

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 555 (1939).
[Crossref]

Davy, E.

Graham, C. H.

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 555 (1939).
[Crossref]

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 299 (1935).

Guttmann, H.

Hartline, H. K.

H. K. Hartline, J. Cellular Comp. Physiol. 5, 229 (1934).
[Crossref]

Hillmann, B.

Karn, H. W.

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

Long, G. E.

Margaria, R.

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 299 (1935).

Mote, F. A.

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 555 (1939).
[Crossref]

Rouse, R. O.

Am. J. Physiol. (1)

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 299 (1935).

Compt. Rend. Soc. Biol. (1)

A. M. Bloch, Compt. Rend. Soc. Biol. 2, 493 (1885).

J. Cellular Comp. Physiol. (1)

H. K. Hartline, J. Cellular Comp. Physiol. 5, 229 (1934).
[Crossref]

J. Exptl. Psychol. (1)

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 555 (1939).
[Crossref]

J. Gen. Physiol. (1)

E. Baumgardt, J. Gen. Physiol. 31, 269 (1948).

J. Gen. Psychol. (1)

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

J. Opt. Soc. Am. (5)

J. Physiol. (2)

H. B. Barlow, J. Physiol. 141, 337 (1958).

G. S. Brindley, J. Physiol. 124, 400 (1954).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of optical system. (A) 18-A, 6-V ribbon-filament tungsten lamp, (B) concave focusing mirror, (C, C′) Hilger and Watts model D284 double monochromator, (D, D′) collecting and condensing lenses, (E, E′) neutral-density optical wedges, (G) stepper-motor shutter, (H) condensing lens, (I) stimulus aperture and foveal fixation aid, (J) peripheral fixation light, (K) filter and/or diaphragm shutter, (L) surround tungsten source, (M) surround integrating hemisphere, (N) artificial pupil.

Fig. 2
Fig. 2

Relative IT values of three subjects and the subjects’ average for foveal presentation. Each curve is pinned to unity at the shortest duration (0.0028 sec) to aid in the comparison of the results with two spectral stimuli. Figure 2(a) represents data with 4.5′ diam stimuli and dark surround; Fig. 2(b), 45′ diam stimuli and dark surround; Fig. 2(c), 45′ diameter stimuli with a light surround (138 trolands). Data taken with the 650-mμ stimuli are represented by a dashed line with crosses and with the 450-mμ stimuli by a dotted line with open circles. Ranges of threshold determinations are included on all individual curves as brackets. A model based on Hartline’s single-receptor results (solid line) is superposed on the averages.

Fig. 3
Fig. 3

Relative IT values and averages of three subjects for peripheral presentation with a dark surround. Each curve is pinned to unity at the shortest duration (0.0028 sec) to aid in the comparison of the results with two spectral stimuli. (a) represents data with 4.5′ diam stimuli, (b) 45′ diam stimuli, and (c) with 3° diam stimuli. Data taken with the 650-mμ stimuli are represented by a dashed line with crosses and with the 450-mμ stimuli by a dotted line with open circles. Ranges of threshold determinations are included on all individual curves as brackets. A model based on Hartline’s single-receptor results (solid line) is superposed on the averages.

Fig. 4
Fig. 4

Subjects’ averaged data for each wavelength plotted to compare stimulus size effects. Data were taken with peripheral presentation and a dark surround. The curves represent data taken with a 3° diam stimulus (triangles), 45′ diam stimulus (open circles), and 4.5′ diam stimulus (filled circles).The data for 450 mμ are equated to IT=1.0 at the shortest duration. Those for 650 mμ are equated to IT=10 at the shortest duration for this graph.

Fig. 5
Fig. 5

Subjects’ averaged data obtained with a 45′ diam stimulus and foveal vision plotted to show adaptive effects. The light-surround data are represented by open triangles and the dark-surround data by open circles. The data for 450 mμ are equated to IT=1.0 at the shortest duration. Those for 650 mμ are equated to IT=10 at the shortest duration, for this graph.

Fig. 6
Fig. 6

Relative IT threshold values using intermediate wavelengths for subject R. S. Note the trend in the top graph (45′) toward an orderly arrangement of the IT function with respect to wavelength and the absence of such a trend in the graph below (2′). The five spectral stimuli used were 650 mμ (crosses), 580 mμ (solid triangles), 550 mμ (open triangles), 490 mμ (open squares), and 450 mμ (open circles). A dark surround with foveal presentation was employed in obtaining these data.

Fig. 7
Fig. 7

Subjects’ averaged data for each wavelength plotted to compare stimulus-size effects with foveal vision. A dark surround and foveal presentation was employed for the above plotted values. The two simulus sizes employed were 45′ diam (open circles) and 4.5′ diam (filled circle). The data for 450 mμ are equated to IT=1.0 at the shortest duration. Those for 650 mμ are equated to IT=10 at the shortest duration, for this graph.

Tables (3)

Tables Icon

Table I Relative IT threshold values for three subjects and the average of the three subjects for each set of conditions (all values were obtained with foveal vision).

Tables Icon

Table II Relative IT threshold values for three subjects and the average of the three subjects for each set of conditions [all values were obtained with peripheral vision (15°) and a dark surround].

Tables Icon

Table III Relative IT values for subject R. S. (the values are a mean of two threshold measurements and were obtained with foveal vision).