Abstract

Spectral distributions of 622 samples of daylight (skylight, and sunlight plus skylight) have been subjected to characteristic vector analysis, as composite data and in three subgroups (99 distributions measured by Budde; 249, by Condit; and 274, by Henderson and Hodgkiss). The chromaticity coordinates (x,y) computed from these distributions have been compared with direct visual determinations of chromaticity coordinates of daylight by Nayatani and Wyszecki, and by Chamberlin, Lawrence, and Belbin. It was found that the chromaticities indicated by the spectral distributions and by direct visual colorimetry cluster about the curve: y = 2.870x−3.000x2−0.275. This curve of typical daylight chromaticities falls slightly on the green side of the Planckian locus. From the mean and the first two characteristic vectors of the composite data, spectral distribution curves have been reconstituted by choice of scalar multiples of the vectors such that the chromaticity points fall on the curve of typical daylight chromaticities at places corresponding to correlated color temperatures of 4800°, 5500°, 6500°, 7500°, and 10 000°K. The representative character of these reconstituted spectral-distribution curves has been established by comparison with the measured curves from each subgroup yielding the closest approximation to the same chromaticities. The agreement so found suggests that this family of curves is more representative of the various phases of daylight between correlated color temperatures 4800° and 10 000°K than any previously derived distributions.

© 1964 Optical Society of America

Full Article  |  PDF Article

Corrections

D. B. Judd, D. L. MacAdam, and G. Wyszecki, "Errata," J. Opt. Soc. Am. 54, 1382_1-1382 (1964)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-54-11-1382_1

References

  • View by:
  • |
  • |
  • |

  1. Proceedings of the International Commission on Illumination, 8th Session, Cambridge, 1931 (Cambridge University Press, Cambridge, England, 1932) p. 19.
  2. R. Davis and K. S. Gibson, “Filters for the Reproduction of Sunlight and Daylight and the Determination of Color Temperature,” Natl. Bur. Std. (U. S.), Misc. Pub. 114 (1931).
  3. R. Davis, K. S. Gibson, and G. W. Haupt, J. Res. Natl. Bur. Std. 50, 31 (1953);J. Opt. Soc. Am. 43, 172 (1953).
    [Crossref]
  4. G. N. Rautian, N. V. Lobanova, and M. A. Znamenskaya, Z. Tech. Fisiki 26, 193 (1956).D. B. Judd, Farbe 10, 31 (1961).
  5. Proceedings of the International Commission on Illumination, 14th Session, Brussels, 1959 (Bureau Central de la Commission Internationale de l’Eclairage, 57, rue Cuvier, Paris, 5e, France, 1960), Vol. A, p. 93.
  6. Proceedings of the International Commission on Illumination, 15th Session, Vienna, 1963 (Bureau Central de la Commission Internationale de l’Eclairage) (to be published).
  7. K. S. Gibson, J. Opt. Soc. Am. 30, 88 (1940).
  8. W. E. K. Middleton, J. Opt. Soc. Am. 44, 793 (1954).
    [Crossref]
  9. Proceedings of the International Commission on Illumination, 13th Session, Zurich, 1955 (Bureau Central de la Commission Internationale de l’Eclairage, 57, rue Cuvier, Paris 5e, France, 1955), Vol. I, p. 1.3.1 U-9.
  10. Norman Macbeth and W. B. Reese, “Some practical notes on standard illumination practices for color matching in the U. S. A.—past, present, and future,” 7th International Conference on Color; Florence, Prato, and Padua, Italy; 2–7 May 1963.
  11. C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Miscellaneous Collections 74, No. 7, Publ.No. 2714 (1923).
  12. P. Moon, J. Franklin Inst. 230, 583 (1940).
    [Crossref]
  13. A. H. Taylor and G. P. Kerr, J. Opt. Soc. Am. 31, 3 (1941).
    [Crossref]
  14. S. T. Henderson and D. Hodgkiss, Brit. J. Appl. Phys. 14, 125 (1963).
    [Crossref]
  15. H. R. Condit and F. Grum, J. Opt. Soc. Am. 53, 1340 (1963);J. Opt. Soc. Am. 54, 937 (1964).
  16. R. H. Morris and J. H. Morrissey, J. Opt. Soc. Am. 44, 530 (1954);J. L. Simonds, ibid. 53, 968 (1963).
    [Crossref]
  17. R. Donaldson, Proc. Phys. Soc. (London) 59, 554 (1947).
    [Crossref]
  18. G. J. Chamberlin, A. Lawrence, and A. A. Belbin, Light and Lighting 56, 73 (1963).
  19. Y. Nayatani and G. Wyszecki, J. Opt. Soc. Am. 53, 626 (1963).
    [Crossref]
  20. K. L. Kelly, J. Opt. Soc. Am. 53, 999 (1963).
    [Crossref]

1963 (5)

S. T. Henderson and D. Hodgkiss, Brit. J. Appl. Phys. 14, 125 (1963).
[Crossref]

H. R. Condit and F. Grum, J. Opt. Soc. Am. 53, 1340 (1963);J. Opt. Soc. Am. 54, 937 (1964).

G. J. Chamberlin, A. Lawrence, and A. A. Belbin, Light and Lighting 56, 73 (1963).

K. L. Kelly, J. Opt. Soc. Am. 53, 999 (1963).
[Crossref]

Y. Nayatani and G. Wyszecki, J. Opt. Soc. Am. 53, 626 (1963).
[Crossref]

1956 (1)

G. N. Rautian, N. V. Lobanova, and M. A. Znamenskaya, Z. Tech. Fisiki 26, 193 (1956).D. B. Judd, Farbe 10, 31 (1961).

1954 (2)

1953 (1)

R. Davis, K. S. Gibson, and G. W. Haupt, J. Res. Natl. Bur. Std. 50, 31 (1953);J. Opt. Soc. Am. 43, 172 (1953).
[Crossref]

1947 (1)

R. Donaldson, Proc. Phys. Soc. (London) 59, 554 (1947).
[Crossref]

1941 (1)

1940 (2)

K. S. Gibson, J. Opt. Soc. Am. 30, 88 (1940).

P. Moon, J. Franklin Inst. 230, 583 (1940).
[Crossref]

1931 (1)

R. Davis and K. S. Gibson, “Filters for the Reproduction of Sunlight and Daylight and the Determination of Color Temperature,” Natl. Bur. Std. (U. S.), Misc. Pub. 114 (1931).

1923 (1)

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Miscellaneous Collections 74, No. 7, Publ.No. 2714 (1923).

Abbot, C. G.

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Miscellaneous Collections 74, No. 7, Publ.No. 2714 (1923).

Aldrich, L. B.

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Miscellaneous Collections 74, No. 7, Publ.No. 2714 (1923).

Belbin, A. A.

G. J. Chamberlin, A. Lawrence, and A. A. Belbin, Light and Lighting 56, 73 (1963).

Chamberlin, G. J.

G. J. Chamberlin, A. Lawrence, and A. A. Belbin, Light and Lighting 56, 73 (1963).

Condit, H. R.

H. R. Condit and F. Grum, J. Opt. Soc. Am. 53, 1340 (1963);J. Opt. Soc. Am. 54, 937 (1964).

Davis, R.

R. Davis, K. S. Gibson, and G. W. Haupt, J. Res. Natl. Bur. Std. 50, 31 (1953);J. Opt. Soc. Am. 43, 172 (1953).
[Crossref]

R. Davis and K. S. Gibson, “Filters for the Reproduction of Sunlight and Daylight and the Determination of Color Temperature,” Natl. Bur. Std. (U. S.), Misc. Pub. 114 (1931).

Donaldson, R.

R. Donaldson, Proc. Phys. Soc. (London) 59, 554 (1947).
[Crossref]

Fowle, F. E.

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Miscellaneous Collections 74, No. 7, Publ.No. 2714 (1923).

Gibson, K. S.

R. Davis, K. S. Gibson, and G. W. Haupt, J. Res. Natl. Bur. Std. 50, 31 (1953);J. Opt. Soc. Am. 43, 172 (1953).
[Crossref]

K. S. Gibson, J. Opt. Soc. Am. 30, 88 (1940).

R. Davis and K. S. Gibson, “Filters for the Reproduction of Sunlight and Daylight and the Determination of Color Temperature,” Natl. Bur. Std. (U. S.), Misc. Pub. 114 (1931).

Grum, F.

H. R. Condit and F. Grum, J. Opt. Soc. Am. 53, 1340 (1963);J. Opt. Soc. Am. 54, 937 (1964).

Haupt, G. W.

R. Davis, K. S. Gibson, and G. W. Haupt, J. Res. Natl. Bur. Std. 50, 31 (1953);J. Opt. Soc. Am. 43, 172 (1953).
[Crossref]

Henderson, S. T.

S. T. Henderson and D. Hodgkiss, Brit. J. Appl. Phys. 14, 125 (1963).
[Crossref]

Hodgkiss, D.

S. T. Henderson and D. Hodgkiss, Brit. J. Appl. Phys. 14, 125 (1963).
[Crossref]

Kelly, K. L.

Kerr, G. P.

Lawrence, A.

G. J. Chamberlin, A. Lawrence, and A. A. Belbin, Light and Lighting 56, 73 (1963).

Lobanova, N. V.

G. N. Rautian, N. V. Lobanova, and M. A. Znamenskaya, Z. Tech. Fisiki 26, 193 (1956).D. B. Judd, Farbe 10, 31 (1961).

Macbeth, Norman

Norman Macbeth and W. B. Reese, “Some practical notes on standard illumination practices for color matching in the U. S. A.—past, present, and future,” 7th International Conference on Color; Florence, Prato, and Padua, Italy; 2–7 May 1963.

Middleton, W. E. K.

Moon, P.

P. Moon, J. Franklin Inst. 230, 583 (1940).
[Crossref]

Morris, R. H.

Morrissey, J. H.

Nayatani, Y.

Rautian, G. N.

G. N. Rautian, N. V. Lobanova, and M. A. Znamenskaya, Z. Tech. Fisiki 26, 193 (1956).D. B. Judd, Farbe 10, 31 (1961).

Reese, W. B.

Norman Macbeth and W. B. Reese, “Some practical notes on standard illumination practices for color matching in the U. S. A.—past, present, and future,” 7th International Conference on Color; Florence, Prato, and Padua, Italy; 2–7 May 1963.

Taylor, A. H.

Wyszecki, G.

Znamenskaya, M. A.

G. N. Rautian, N. V. Lobanova, and M. A. Znamenskaya, Z. Tech. Fisiki 26, 193 (1956).D. B. Judd, Farbe 10, 31 (1961).

Brit. J. Appl. Phys. (1)

S. T. Henderson and D. Hodgkiss, Brit. J. Appl. Phys. 14, 125 (1963).
[Crossref]

J. Franklin Inst. (1)

P. Moon, J. Franklin Inst. 230, 583 (1940).
[Crossref]

J. Opt. Soc. Am. (7)

J. Res. Natl. Bur. Std. (1)

R. Davis, K. S. Gibson, and G. W. Haupt, J. Res. Natl. Bur. Std. 50, 31 (1953);J. Opt. Soc. Am. 43, 172 (1953).
[Crossref]

Light and Lighting (1)

G. J. Chamberlin, A. Lawrence, and A. A. Belbin, Light and Lighting 56, 73 (1963).

Natl. Bur. Std. (U. S.), Misc. Pub. 114 (1)

R. Davis and K. S. Gibson, “Filters for the Reproduction of Sunlight and Daylight and the Determination of Color Temperature,” Natl. Bur. Std. (U. S.), Misc. Pub. 114 (1931).

Proc. Phys. Soc. (London) (1)

R. Donaldson, Proc. Phys. Soc. (London) 59, 554 (1947).
[Crossref]

Smithsonian Miscellaneous Collections (1)

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Miscellaneous Collections 74, No. 7, Publ.No. 2714 (1923).

Z. Tech. Fisiki (1)

G. N. Rautian, N. V. Lobanova, and M. A. Znamenskaya, Z. Tech. Fisiki 26, 193 (1956).D. B. Judd, Farbe 10, 31 (1961).

Other (5)

Proceedings of the International Commission on Illumination, 14th Session, Brussels, 1959 (Bureau Central de la Commission Internationale de l’Eclairage, 57, rue Cuvier, Paris, 5e, France, 1960), Vol. A, p. 93.

Proceedings of the International Commission on Illumination, 15th Session, Vienna, 1963 (Bureau Central de la Commission Internationale de l’Eclairage) (to be published).

Proceedings of the International Commission on Illumination, 13th Session, Zurich, 1955 (Bureau Central de la Commission Internationale de l’Eclairage, 57, rue Cuvier, Paris 5e, France, 1955), Vol. I, p. 1.3.1 U-9.

Norman Macbeth and W. B. Reese, “Some practical notes on standard illumination practices for color matching in the U. S. A.—past, present, and future,” 7th International Conference on Color; Florence, Prato, and Padua, Italy; 2–7 May 1963.

Proceedings of the International Commission on Illumination, 8th Session, Cambridge, 1931 (Cambridge University Press, Cambridge, England, 1932) p. 19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

F. 1
F. 1

Vectors V1 (open circles) and V2 (solid circles) derived from the composite data (622 spectral distributions).

F. 2
F. 2

Chromaticities of daylight compared to the locus of chromaticities implied by the Planck radiation law (open circles connected by solid lines). The temperatures of the complete radiator corresponding to the points at the centers of these open circles are indicated in degrees Kelvin. The straight lines intersecting this locus at 4800°, 5500°, 6500°, 7500°, and 10 000°K correspond to lines of constant correlated color temperature computed by Kelly from the 1960 CIE–UCS diagram. The center of the chromaticity range found for daylight by Nayatani and Wyszecki is shown by solid circles connected with a solid line; that found by Chamberlin, Lawrence, and Belbin, by a dotted line. Chromaticity points computed from the measured spectral distribution curves are indicated by open circles (Condit), by crosses (Henderson and Hodgkiss), and by solid circles (Budde). The locus of chromaticities taken in the present paper to be typical of daylight conforms to the relation: y = 2.870x−3.000x2 −0.275, and is shown by squares connected by a dotted line.

F. 3
F. 3

Spectral distribution of typical daylight for correlated color temperatures: 4800°, 5500°, 6500°, 7500°, and 10 000°K reconstituted from the mean and the first two characteristic vectors of the composite data (622 measured distributions).

F. 4
F. 4

Comparison of measured spectral distributions of daylight, whose chromaticities are near to that of typical daylight of correlated color temperature 5500°K, with distributions reconstituted from the mean and the first two characteristic vectors derived from the composite data (622 measured distributions). The measured distribution chosen from each subset of data is that whose chromaticity point is nearest on the 1960 CIE–UCS diagram to that for typical daylight of correlated color temperature 5500°K; see Table VI. Quadrants A, B, and C compare measured distributions (A—Condit 51; B—Henderson 107; C— Budde 84) with the reconstitution giving the best least-squares fit. The values of the scalar multiples (M1 and M2) so found are indicated together with the variance of the measured distribution from the reconstitution. Quadrant D compares all three of these measured distributions with the reconstituted distribution shown in Fig. 3 for 5500°K.

F. 5
F. 5

Same as Fig. 4 except that the correlated color temperature is 6500°K. A—Condit 120; B—Henderson 67; C—Budde 12.

F. 6
F. 6

Same as Fig. 4 except that the correlated color temperature is 7500°K. A—Condit 241; B—Henderson 247; C—Budde 44.

F. 7
F. 7

Comparison of three spectral distributions intended to represent typical daylight at a correlated color temperature of 6500°K. The distribution reconstituted from the mean and first two characteristic vectors of the composite data is shown as a solid line; this distribution is also shown in Fig. 3. The distribution reconstituted from the Henderson data for 330 to 780 nm is shown by open circles, and the distribution derived for the British Standards Institution by taking an average of a selection of measured spectral distributions from the same data is shown by a dotted line.

Tables (6)

Tables Icon

Table I Mean and first four characteristic vectors for composite data on spectral irradiance of daylight.

Tables Icon

Table II Chromaticity coordinates (x,y) of typical daylight for various correlated color temperatures.

Tables Icon

Table III Scalar multiples of the first two characteristic vectors of the composite data required to reconstitute spectral distribution curves of typical daylight of five correlated color temperatures.

Tables Icon

Table IV Extension of the mean and the first two characteristic vectors of the composite data given in Table I to the spectral ranges 300 to 330 nm and 700 to 830 nm from Moon’s compilation of the spectral absorptance of the earth’s atmosphere due to ozone and water vapor.

Tables Icon

Table V Relative spectral irradiance of typical daylight reconstituted from mean and characteristic vectors of the composite data (Tables I and IV) by the scalar multiples of Table III.

Tables Icon

Table VI Chromaticity coordinates (x,y) corresponding to the measured spectral distributions shown in Figs. 46.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| S L I | = 0 ,
E 1 = Ē 1 + M 1 V 1 , 1 + M 2 V 2 , 1 + M 3 V 3 , 1 + M p V p , 1 , E 2 = Ē 2 + M 1 V 1 , 2 + M 2 V 2 , 2 + M 3 V 3 , 2 + M p V p , 2 , E r = Ē r + M 1 V 1 , r + M 2 V 2 , r + M 3 V 3 , r + M p V p , r . } p r .
i = 1 r V a , i V b , i = 0 , a b .
E λ = Ē λ + M 1 V 1 , λ + M 2 V 2 , λ ,
X = E λ x ¯ λ Δ λ = ( Ē λ + M 1 V 1 , λ + M 2 V 2 , λ ) x ¯ λ Δ λ ,
X = X 0 + M 1 X 1 + M 2 X 2 ,
Y = Y 0 + M 1 Y 1 + M 2 Y 2 , Z = Z 0 + M 1 Z 1 + M 2 Z 2 .
x = X 0 / S 0 + M 1 X 1 / S 0 + M 2 X 2 / S 0 1 + M 1 S 1 / S 0 + M 2 S 2 / S 0 , y = Y 0 / S 0 + M 1 Y 1 / S 0 + M 2 Y 2 / S 0 1 + M 1 S 1 / S 0 + M 2 S 2 / S 0 .
M 1 = X 0 Y 2 X 2 Y 0 + ( Y 0 S 2 Y 2 S 0 ) x + ( X 2 S 0 X 0 S 2 ) y X 2 Y 1 X 1 Y 2 + ( Y 2 S 1 Y 1 S 2 ) x + ( X 1 S 2 X 2 S 1 ) y , M 2 = X 1 Y 0 X 0 Y 1 + ( Y 1 S 0 Y 0 S 1 ) x + ( X 0 S 1 X 1 S 0 ) y X 2 Y 1 X 1 Y 2 + ( Y 2 S 1 Y 1 S 2 ) x + ( X 1 S 2 X 2 S 1 ) y .
x = 0.30776 + 0.00561 M 1 + 0.00641 M 2 1.00000 + 0.11594 M 1 + 0.00162 M 2 , y = 0.32079 + 0.00575 M 1 + 0.00229 M 2 1.00000 + 0.11594 M 1 + 0.00162 M 2 ,
M 1 = 1.3515 1.7703 x + 5.9114 y 0.0241 + 0.2562 x 0.7341 y , M 2 = 0.0300 31.4424 x + 30.0717 y 0.0241 + 0.2562 x 0.7341 y .