Abstract

Six vibration–rotation bands of DCN between 2 and 6 μ have been analyzed. All the rotational constants have been obtained through the terms quadratic in vibrational quantum numbers. Two quadratic and seven cubic vibrational anharmonic constants have been obtained explicitly. Seven combinations of quadratic and cubic vibrational constants have also been obtained. Data are given on the analysis of the two parallel fundamental bands of D13CN, as well as the ν3 bands of DC15N, HI3CN, and HC15N. Δ–Δ transitions of both DCN and HCN in the ν3 fundamental regions have been analyzed. The splitting of the Δ levels was clearly observed for the first time and is in agreement with the l-type resonance calculations. The line structure of the Q branches of both Π–Π and Δ–Δ “hot bands” has also been resolved. By means of the Ritz principle the levels 2ν20, 2ν22, and ν21 of DCN and 2ν22 of HCN have been determined.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Maki and L. R. Blaine, J. Mol. Spectry. 12, 45 (1964).
    [Crossref]
  2. D. H. Rank, G. Skorinko, D. P. Eastman, and T. A. Wiggins, J. Opt. Soc. Am. 50, 421 (1960).
    [Crossref]
  3. S. Maes, Cahiers Phys. 14, 125 (1960).
  4. A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 448 (1953).
    [Crossref]
  5. P. B. Checkland and H. W. Thompson, Trans. Faraday Soc. 51, 1 (1955).
    [Crossref]
  6. H. C. Allen, E. D. Tidwell, and E. K. Plyler, J. Chem. Phys. 25, 302 (1956).
    [Crossref]
  7. E. K. Plyler and L. R. Blaine, J. Res. Natl. Bur. Std. 62, 7 (1959).
    [Crossref]
  8. E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Res. Natl. Bur. Std. 55, 279 (1955).
    [Crossref]
  9. D. H. Rank, D. P. Eastman, B. S. Rao, and T. A. Wiggins, J. Opt. Soc. Am. 51, 929 (1961).
    [Crossref]
  10. G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1954).
  11. T. Törring, Z. Physik 161, 179 (1961).
    [Crossref]
  12. G. Amat and Harald H. Nielsen, J. Mol. Spectry. 2, 163 (1958).
    [Crossref]
  13. W. W. Brim, J. M. Hoffman, H. H. Nielsen, and K. N. Rao, J. Opt. Soc. Am. 50, 1208 (1960).
    [Crossref]

1964 (1)

A. G. Maki and L. R. Blaine, J. Mol. Spectry. 12, 45 (1964).
[Crossref]

1961 (2)

1960 (3)

1959 (1)

E. K. Plyler and L. R. Blaine, J. Res. Natl. Bur. Std. 62, 7 (1959).
[Crossref]

1958 (1)

G. Amat and Harald H. Nielsen, J. Mol. Spectry. 2, 163 (1958).
[Crossref]

1956 (1)

H. C. Allen, E. D. Tidwell, and E. K. Plyler, J. Chem. Phys. 25, 302 (1956).
[Crossref]

1955 (2)

P. B. Checkland and H. W. Thompson, Trans. Faraday Soc. 51, 1 (1955).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Res. Natl. Bur. Std. 55, 279 (1955).
[Crossref]

1953 (1)

A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 448 (1953).
[Crossref]

Allen, H. C.

H. C. Allen, E. D. Tidwell, and E. K. Plyler, J. Chem. Phys. 25, 302 (1956).
[Crossref]

Amat, G.

G. Amat and Harald H. Nielsen, J. Mol. Spectry. 2, 163 (1958).
[Crossref]

Blaine, L. R.

A. G. Maki and L. R. Blaine, J. Mol. Spectry. 12, 45 (1964).
[Crossref]

E. K. Plyler and L. R. Blaine, J. Res. Natl. Bur. Std. 62, 7 (1959).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Res. Natl. Bur. Std. 55, 279 (1955).
[Crossref]

Brim, W. W.

Checkland, P. B.

P. B. Checkland and H. W. Thompson, Trans. Faraday Soc. 51, 1 (1955).
[Crossref]

Douglas, A. E.

A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 448 (1953).
[Crossref]

Eastman, D. P.

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1954).

Hoffman, J. M.

Maes, S.

S. Maes, Cahiers Phys. 14, 125 (1960).

Maki, A. G.

A. G. Maki and L. R. Blaine, J. Mol. Spectry. 12, 45 (1964).
[Crossref]

Nielsen, H. H.

Nielsen, Harald H.

G. Amat and Harald H. Nielsen, J. Mol. Spectry. 2, 163 (1958).
[Crossref]

Plyler, E. K.

E. K. Plyler and L. R. Blaine, J. Res. Natl. Bur. Std. 62, 7 (1959).
[Crossref]

H. C. Allen, E. D. Tidwell, and E. K. Plyler, J. Chem. Phys. 25, 302 (1956).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Res. Natl. Bur. Std. 55, 279 (1955).
[Crossref]

Rank, D. H.

Rao, B. S.

Rao, K. N.

Sharma, D.

A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 448 (1953).
[Crossref]

Skorinko, G.

Thompson, H. W.

P. B. Checkland and H. W. Thompson, Trans. Faraday Soc. 51, 1 (1955).
[Crossref]

Tidwell, E. D.

H. C. Allen, E. D. Tidwell, and E. K. Plyler, J. Chem. Phys. 25, 302 (1956).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Res. Natl. Bur. Std. 55, 279 (1955).
[Crossref]

Törring, T.

T. Törring, Z. Physik 161, 179 (1961).
[Crossref]

Wiggins, T. A.

Cahiers Phys. (1)

S. Maes, Cahiers Phys. 14, 125 (1960).

J. Chem. Phys. (2)

A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 448 (1953).
[Crossref]

H. C. Allen, E. D. Tidwell, and E. K. Plyler, J. Chem. Phys. 25, 302 (1956).
[Crossref]

J. Mol. Spectry. (2)

A. G. Maki and L. R. Blaine, J. Mol. Spectry. 12, 45 (1964).
[Crossref]

G. Amat and Harald H. Nielsen, J. Mol. Spectry. 2, 163 (1958).
[Crossref]

J. Opt. Soc. Am. (3)

J. Res. Natl. Bur. Std. (2)

E. K. Plyler and L. R. Blaine, J. Res. Natl. Bur. Std. 62, 7 (1959).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Res. Natl. Bur. Std. 55, 279 (1955).
[Crossref]

Trans. Faraday Soc. (1)

P. B. Checkland and H. W. Thompson, Trans. Faraday Soc. 51, 1 (1955).
[Crossref]

Z. Physik (1)

T. Törring, Z. Physik 161, 179 (1961).
[Crossref]

Other (1)

G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1954).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

F. 1
F. 1

Absorption of HCN between 3180 and 3215 cm−1. Δ indicates lines due to DCN and 0 indicates lines due to H2O.

F. 2
F. 2

Left panel: Q branch of π–π transition of HCN at 3292.19 cm−1, right panel: Q branch of Δ–Δ transition of HCN at 3272.68 cm−1. Both curves were obtained with a pressure of about 4.5 Torr DCN and a path of 8 m.

Tables (9)

Tables Icon

Table I Absorption band constants for deuterium cyanide (DCN). All constants are given in wavenumbers (cm−1). The uncertainties listed are standard deviations and do not reflect possible systematic errors.

Tables Icon

Table II Absorption band constants for various isotopic species of hydrogen cyanide. All constants are given in wavenumbers (cm−1). The uncertainties listed are standard deviations and do not reflect possible systematic errors.

Tables Icon

Table III Vacuum wavenumbers of the rotational lines of the “second hot bands” associated with the ν3 transition of HCN.

Tables Icon

Table IV Vacuum wavenumbers (cm−1) of the rotational lines of some bands of DCN which are involved in l-type resonance.

Tables Icon

Table V Vacuum wavenumbers of the rotational lines of the ν3 bands of various isotopic species of hydrogen cyanide.

Tables Icon

Table VI Revised constants for HCN. (These values are probably good to ±6 in the last digit.)

Tables Icon

Table VII Comparison of the observed l-doublet separation of 3ν21 with the values calculated both with and without the l-type resonance correction.

Tables Icon

Table VIII Vibrational constants for DCN given in reciprocal centimeters. These values are probably good to ±6 in the last digit.

Tables Icon

Table IX Rotational constants for DCN.a,b

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ν obs . = ν 0 + ( B + B ) m + ( B B ) m 2 2 ( D + D ) m 3 ( D D ) m 4 ,
ν obs . = ν 0 + ( B B ) J ( J + 1 ) ( D D ) J 2 ( J + 1 ) 2
Δ 2 F ( J ) = R ( J 1 ) P ( J + 1 ) = ( 4 B 6 D ) ( J + 1 2 ) 8 D ( J + 1 2 ) 3
Δ ν = ( q + q ) m + ( q q ) m 2 2 ( μ + μ ) m 3 ( μ μ ) m 4 ,
[ l 2 ( 2 J + 1 ) / J ( J + 1 ) ] exp [ J ( J + 1 ) Bhc / k T ] .
2 ν 2 2 = ν 0 ( 02 2 1 01 1 0 ) ν 0 ( 02 2 1 02 2 0 ) + ν 0 ( 01 1 0 000 ) = 3987.235 3272.675 + 711.983 = 1426.54 cm 1 .
q = 0.00613193 + 0.000172 υ 1 + 0.00007876 υ 2 0.000154 υ 3 ( 7.24 + 0.10 υ 2 ) J ( J + 1 ) × 10 8 cm 1 .
G ( υ 1 , υ 2 , υ 3 , l ) = i ω i ( υ i + 1 2 d i ) + i j x i j ( υ i + 1 2 d i ) ( υ j + 1 2 d j ) + ( x l l B υ ) l 2 + ijk y ijk ( υ i + 1 2 d i ) ( υ j + 1 2 d j ) ( υ k + 1 2 d k ) + i y ill ( υ i + 1 2 d i ) l 2 ,
B υ = B e i α i ( υ i + 1 2 d i ) + i j γ i j ( υ i + 1 2 d i ) × ( υ j + 1 2 d j ) + γ l l l 2 , j i
ν 0 ( 001 000 ) ν 0 ( 001 01 1 0 ) = 2630.303 2061.278 = 569.025 cm 1 , ν 0 ( 11 1 0 000 ) ν 0 ( 11 1 0 01 1 0 ) = 2497.143 1928.096 = 569.047 cm 1 , ν 0 ( 01 1 1 000 ) ν 0 ( 01 1 1 01 1 0 ) = 3183.670 2614.623 = 569.047 cm 1 .
ν 0 ( 02 0 0 000 ) = ν 0 ( 02 0 1 01 1 0 ) ν 0 ( 02 0 1 02 0 0 ) + ν 0 ( 01 1 0 000 ) = 3160.08 2599.140 + 569.039 = 1129.98 cm 1 ,
ν 0 ( 02 2 0 000 ) = ν 0 ( 02 2 1 01 1 0 ) ν 0 ( 02 2 1 02 2 0 ) + ν 0 ( 01 1 0 000 ) = 3167.90 2599.000 + 569.039 = 1137.94 cm 1 .