Abstract

The field trials of the 10°-field supplementary standard observer proposal performed by W. S. Stiles and G. Wyszecki on the National Research Council three-primary Donaldson colorimeter have been repeated on the National Bureau of Standards Donaldson colorimeter. Only the least selective 11 of the 18 NRC filters were used in the NBS repetition, which employed 11 observers each making two sets of matches. The NBS Donaldson colorimeter with a 10°-field of view was calibrated both in terms of the 1931 CIE standard observer system and in terms of the 1959 supplementary proposal. As expected, visual matches with a 10° field compared quite unsatisfactorily with predictions made by the 1931 standard observer. The results are in general agreement with the Stiles–Wyszecki field-trial data. The agreement with the predictions by the 1959 proposal is improved when the results of the two field trials are combined, because the resulting arrays of individual-observer data encompass the predicted chromaticities of all of the filters but the red one. It is concluded that, although the proposal is not completely satisfactory, it does yield a significant improvement over the agreements achieved between predictions by the 1931 observer and observations.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Judd, Proc. CIE (Brussels) Vol.  A (1959).
  2. W. S. Stiles and J. M. Burch, Opt. Acta 6, 1 (1959).
    [CrossRef]
  3. N. I. Speranskaya, CIE Comm. Repts., NPL Symp. 81, 313 (1958);Opt. Spectry. 7, 429 (1959)[Opt. i Spektroskopiya 7 (1959)].
  4. W. S. Stiles and G. Wyszecki, J. Opt. Soc. Am. 52, 58 (1962).
    [CrossRef]
  5. R. Donaldson, Proc. Phys. Soc. (London) 59, 554 (1947).
    [CrossRef]
  6. H. J. Keegan, J. C. Schleter, and D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
    [CrossRef]
  7. I. Nimeroff, J. R. Rosenblatt, and M. C. Dannemiller, J. Opt. Soc. Am. 52, 685 (1962).
    [CrossRef]
  8. I. Nimeroff, DIC thesis, Imperial College, University of London.
  9. H. Grassmann, Poggendorf’s Ann. 89, 69 (1853).
  10. M. Aguilar and W. S. Stiles, Opt. Acta 1, 57 (1954).
    [CrossRef]

1962 (3)

1959 (2)

D. B. Judd, Proc. CIE (Brussels) Vol.  A (1959).

W. S. Stiles and J. M. Burch, Opt. Acta 6, 1 (1959).
[CrossRef]

1954 (1)

M. Aguilar and W. S. Stiles, Opt. Acta 1, 57 (1954).
[CrossRef]

1947 (1)

R. Donaldson, Proc. Phys. Soc. (London) 59, 554 (1947).
[CrossRef]

1853 (1)

H. Grassmann, Poggendorf’s Ann. 89, 69 (1853).

Aguilar, M.

M. Aguilar and W. S. Stiles, Opt. Acta 1, 57 (1954).
[CrossRef]

Burch, J. M.

W. S. Stiles and J. M. Burch, Opt. Acta 6, 1 (1959).
[CrossRef]

Dannemiller, M. C.

Donaldson, R.

R. Donaldson, Proc. Phys. Soc. (London) 59, 554 (1947).
[CrossRef]

Grassmann, H.

H. Grassmann, Poggendorf’s Ann. 89, 69 (1853).

Judd, D. B.

H. J. Keegan, J. C. Schleter, and D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

D. B. Judd, Proc. CIE (Brussels) Vol.  A (1959).

Keegan, H. J.

H. J. Keegan, J. C. Schleter, and D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

Nimeroff, I.

I. Nimeroff, J. R. Rosenblatt, and M. C. Dannemiller, J. Opt. Soc. Am. 52, 685 (1962).
[CrossRef]

I. Nimeroff, DIC thesis, Imperial College, University of London.

Rosenblatt, J. R.

Schleter, J. C.

H. J. Keegan, J. C. Schleter, and D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

Speranskaya, N. I.

N. I. Speranskaya, CIE Comm. Repts., NPL Symp. 81, 313 (1958);Opt. Spectry. 7, 429 (1959)[Opt. i Spektroskopiya 7 (1959)].

Stiles, W. S.

W. S. Stiles and G. Wyszecki, J. Opt. Soc. Am. 52, 58 (1962).
[CrossRef]

W. S. Stiles and J. M. Burch, Opt. Acta 6, 1 (1959).
[CrossRef]

M. Aguilar and W. S. Stiles, Opt. Acta 1, 57 (1954).
[CrossRef]

Wyszecki, G.

J. Opt. Soc. Am. (2)

J. Res. Natl. Bur. Std. (1)

H. J. Keegan, J. C. Schleter, and D. B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[CrossRef]

Opt. Acta (2)

M. Aguilar and W. S. Stiles, Opt. Acta 1, 57 (1954).
[CrossRef]

W. S. Stiles and J. M. Burch, Opt. Acta 6, 1 (1959).
[CrossRef]

Poggendorf’s Ann. (1)

H. Grassmann, Poggendorf’s Ann. 89, 69 (1853).

Proc. CIE (Brussels) (1)

D. B. Judd, Proc. CIE (Brussels) Vol.  A (1959).

Proc. Phys. Soc. (London) (1)

R. Donaldson, Proc. Phys. Soc. (London) 59, 554 (1947).
[CrossRef]

Other (2)

N. I. Speranskaya, CIE Comm. Repts., NPL Symp. 81, 313 (1958);Opt. Spectry. 7, 429 (1959)[Opt. i Spektroskopiya 7 (1959)].

I. Nimeroff, DIC thesis, Imperial College, University of London.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

F. 1
F. 1

Schematic diagram of Donaldson colorimeter.

F. 2
F. 2

Chromaticity coordinates of the field-trial filters in the 1931 CIE standard observer system ○ and in the 1959 proposed observer system, ●.

F. 3
F. 3

NBS observations of chromaticity coordinates of the field-trial filters in the 1931 CIE standard observer system compared with predictions by that system. Predictions ●, observation average ×, observation boundary, ellipse.

F. 4
F. 4

Individual observations for field-trial filters No. 3 and No. 5. Individual observations ●, observation average ×, predictions ⊙.

F. 5
F. 5

Individual observations for field-trial filters Nos. 6, 7, and 8. Individual observations ●, observation average ×, predictions ⊙.

F. 6
F. 6

Individual observations for field-trial filter No. 9. Individual observations ●, observation average ×, prediction ⊙.

F. 7
F. 7

Individual observations for field-trial filters Nos. 14, 15, and 16. Individual observations ●, observation average ×, prediction: Arrows point toward the average observed chromaticity of the filter to which the outlying observations belong.

F. 8
F. 8

Individual observations for field-trial filters Nos. 17 and 18. Individual observations ●, observation average ×, prediction: Arrows point toward the average observed chromaticity of the filter to which the outlying observations belong.

F. 9
F. 9

NBS observations of chromaticity coordinates of the field-trial filters in the proposed observer system compared with NRC observations and with predictions by that system. Prediction ●, NBS observation average ×; NBS observation boundary, solid ellipse; NRC observation boundary, dashed ellipse.

F. 10
F. 10

Combination of NRC and NBS observations compared with predictions by the 1959 proposed observer system. Prediction ●, NRC–NBS observation boundary ellipse.

F. 11
F. 11

Range of spectral energy distribution of match compared with transmitted energy for field-trial filter No. 3.

F. 12
F. 12

Range of spectral energy distribution of match compared with transmitted energy for field-trial filter No. 9.

F. 13
F. 13

Range of spectral energy distribution of match compared with transmitted energy for field-trial filter No. 17.

F. 14
F. 14

Direct additivity check by author obtained on the Wright visual tristimulus colorimeter.

F. 15
F. 15

Chromaticity coordinates of the field-trial filters in Nimeroff’s 10° observer system obtained with the WDW primaries. Prediction ●, match ○.

F. 16
F. 16

Chromaticity coordinates of the field-trial filters in Judd’s 10° observer system obtained with the WSS primaries. Prediction ●, match ○.

Tables (6)

Tables Icon

Table I Spectral characteristics of Donaldson colorimeter components.

Tables Icon

Table II Calibration coefficients and chromaticity coordinates of the primaries of the Donaldson colorimeter.

Tables Icon

Table III Chromaticity coordinates of field-trial filters predicted by the 1931 standard observer and the 1959 supplementary observer.

Tables Icon

Table IV Ages and complexions of the observers employed in the trials.

Tables Icon

Table V Ages and complexions of the outlying observers.

Tables Icon

Table VI Comparison of observation agreement with predictions by the 2° and 10° observer systems. (A = agreement, B = boderline, D = disagreement).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

X m = n X n R n m , Y m = n Y n R n m , Z m = n Z n R n m .
R n m = q ( r n m ) + r ( r n m ) 2 + s ( r n m ) 3 ,
X n = x n ( X n + Y n + Z n ) , Y n = y n ( X n + Y n + Z n ) , Z n = z n ( X n + Y n + Z n ) .
E Y n a = Y n R n a , or Y n = E Y n a / R n a .
Y n = y n ( X n + Y n + Z n ) ,
X n + Y n + Z n = E Y n a / R n a y n .
X n = ( E Y n a / R n a y n ) x n , Y n = ( E Y n a / R n a y n ) y n , Z n = ( E Y n a / R n a y n ) z n .
X = X R R R c + X G R G c + X B R B c , Y = Y R R R c + Y G R G c + Y B R B c , Z = Z R R R c + Z G R G c + Z B B B c .
x = X / ( X + Y + Z ) , y = Y / ( X + Y + Z ) , z = Z / ( X + Y + Z ) .
0 ( E A T f R V ) d λ m K y n Y n c R n c Y n 0 ( E A T N T L ) d λ ,
K y = 0 ( E A T f R V y ¯ ) d λ / n Y n c R n c Y n 0 ( E A T n T L y ¯ ) d λ ,