Abstract

Spectral emissivities have been obtained for the 2ν2+ν3 and ν3+ν1 carbon dioxide combination bands between 3100 and 3800 cm−1 at 1200°, 1500°, and 1800°K. Heated CO2 was produced in a 150-lb-thrust rocket burner burning gaseous carbon monoxide and oxygen. Emission measurements were made on the expanded exhaust gas of the burner where the composition, total pressure, and temperature could be defined. The spectral emissivities were determined from a calibrated emission spectrum and a spectroscopic determination of the temperature of the test gas. The hot CO2 samples were observed at a total pressure of 1 atm in the optically thin region where the highest spectral emissivities at 3700 cm−1 were about 0.1. The spectral emissivity curves were used to obtain the integrated intensity of the 2.7-μ CO2 band at the high temperatures. The variations of the spectral emissivities and integrated intensities with temperature agree with previous predictions.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Ferriso, J. Chem. Phys. 37, 1955 (1962).
    [Crossref]
  2. R. H. Tourin, J. Opt. Soc. Am. 51, 175 (1961).
    [Crossref]
  3. D. E. Burch and D. A. Gryvnak, Report No. V-1929, Ford Motor Company, Aeronutronic Division, Newport Beach, California (October1962).
  4. U. Oppenheim and Y. Ben-Aryeh, J. Opt. Soc. Am. 53, 344 (1963).
    [Crossref]
  5. W. Malkmus, J. Opt. Soc. Am. 53, 951 (1963).
    [Crossref]
  6. J. C. Breeze and C. C. Ferriso, J. Chem. Phys. 39, 2619 (1963).
    [Crossref]
  7. R. H. Tourin, Infrared Phys. 1, 105 (1961).
    [Crossref]
  8. W. Malkmus, J. Opt. Soc. Am.54 (to be published).
  9. S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1959), p. 23.
  10. G. L. Plass, J. Opt. Soc. Am. 50, 868 (1960).
    [Crossref]
  11. IUPAC, Tables of Wavenumbers for Calibration of Infrared Spectrometers (Butterworth, Inc., Washington, D. C., 1961).
  12. K. Foelsch, J. Aeronaut. Sci. 16, 161 (1949).
    [Crossref]
  13. R. A. Marachin, Report No. RT60-168, GD/Convair, San Diego, California (October1961).
  14. S. Silverman, J. Opt. Soc. Am. 38, 989 (1948);J. Opt. Soc. Am. 39, 275 (1949).
  15. S. S. Penner, Chemistry Problems in Jet Propulsion (Pergamon Press, Inc., New York, 1957).
  16. W. E. Kaskan, Combust. Flame 3, 39 (1959).
    [Crossref]
  17. C. C. Ferriso and C. B. Ludwig, J. Quant. Spectry. Radiative Transfer 4 (1964).
    [Crossref]
  18. G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., New York, 1945), p. 272.
  19. D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
    [Crossref]

1964 (1)

C. C. Ferriso and C. B. Ludwig, J. Quant. Spectry. Radiative Transfer 4 (1964).
[Crossref]

1963 (3)

1962 (1)

C. C. Ferriso, J. Chem. Phys. 37, 1955 (1962).
[Crossref]

1961 (2)

R. H. Tourin, Infrared Phys. 1, 105 (1961).
[Crossref]

R. H. Tourin, J. Opt. Soc. Am. 51, 175 (1961).
[Crossref]

1960 (1)

1959 (1)

W. E. Kaskan, Combust. Flame 3, 39 (1959).
[Crossref]

1951 (1)

D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[Crossref]

1949 (1)

K. Foelsch, J. Aeronaut. Sci. 16, 161 (1949).
[Crossref]

1948 (1)

Ben-Aryeh, Y.

Breeze, J. C.

J. C. Breeze and C. C. Ferriso, J. Chem. Phys. 39, 2619 (1963).
[Crossref]

Burch, D. E.

D. E. Burch and D. A. Gryvnak, Report No. V-1929, Ford Motor Company, Aeronutronic Division, Newport Beach, California (October1962).

Crawford, B. L.

D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[Crossref]

Eggers, D. F.

D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[Crossref]

Ferriso, C. C.

C. C. Ferriso and C. B. Ludwig, J. Quant. Spectry. Radiative Transfer 4 (1964).
[Crossref]

J. C. Breeze and C. C. Ferriso, J. Chem. Phys. 39, 2619 (1963).
[Crossref]

C. C. Ferriso, J. Chem. Phys. 37, 1955 (1962).
[Crossref]

Foelsch, K.

K. Foelsch, J. Aeronaut. Sci. 16, 161 (1949).
[Crossref]

Gryvnak, D. A.

D. E. Burch and D. A. Gryvnak, Report No. V-1929, Ford Motor Company, Aeronutronic Division, Newport Beach, California (October1962).

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., New York, 1945), p. 272.

Kaskan, W. E.

W. E. Kaskan, Combust. Flame 3, 39 (1959).
[Crossref]

Ludwig, C. B.

C. C. Ferriso and C. B. Ludwig, J. Quant. Spectry. Radiative Transfer 4 (1964).
[Crossref]

Malkmus, W.

W. Malkmus, J. Opt. Soc. Am. 53, 951 (1963).
[Crossref]

W. Malkmus, J. Opt. Soc. Am.54 (to be published).

Marachin, R. A.

R. A. Marachin, Report No. RT60-168, GD/Convair, San Diego, California (October1961).

Oppenheim, U.

Penner, S. S.

S. S. Penner, Chemistry Problems in Jet Propulsion (Pergamon Press, Inc., New York, 1957).

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1959), p. 23.

Plass, G. L.

Silverman, S.

Tourin, R. H.

R. H. Tourin, J. Opt. Soc. Am. 51, 175 (1961).
[Crossref]

R. H. Tourin, Infrared Phys. 1, 105 (1961).
[Crossref]

Combust. Flame (1)

W. E. Kaskan, Combust. Flame 3, 39 (1959).
[Crossref]

Infrared Phys. (1)

R. H. Tourin, Infrared Phys. 1, 105 (1961).
[Crossref]

J. Aeronaut. Sci. (1)

K. Foelsch, J. Aeronaut. Sci. 16, 161 (1949).
[Crossref]

J. Chem. Phys. (3)

J. C. Breeze and C. C. Ferriso, J. Chem. Phys. 39, 2619 (1963).
[Crossref]

D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[Crossref]

C. C. Ferriso, J. Chem. Phys. 37, 1955 (1962).
[Crossref]

J. Opt. Soc. Am. (5)

J. Quant. Spectry. Radiative Transfer (1)

C. C. Ferriso and C. B. Ludwig, J. Quant. Spectry. Radiative Transfer 4 (1964).
[Crossref]

Other (7)

G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., New York, 1945), p. 272.

S. S. Penner, Chemistry Problems in Jet Propulsion (Pergamon Press, Inc., New York, 1957).

R. A. Marachin, Report No. RT60-168, GD/Convair, San Diego, California (October1961).

IUPAC, Tables of Wavenumbers for Calibration of Infrared Spectrometers (Butterworth, Inc., Washington, D. C., 1961).

W. Malkmus, J. Opt. Soc. Am.54 (to be published).

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1959), p. 23.

D. E. Burch and D. A. Gryvnak, Report No. V-1929, Ford Motor Company, Aeronutronic Division, Newport Beach, California (October1962).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

F. 1
F. 1

Experimental apparatus.

F. 2
F. 2

Shadowgraph of burner exit with enlarged image of monochromator slit.

F. 3
F. 3

Exit temperature versus mixture ratio (O2/CO by weight). Theoretical curves: F, frozen; S, shifting expansion. Triangles: experimental.

F. 4
F. 4

Optical path of exit gas species versus exit temperature.

F. 5
F. 5

Experimental spectral emissivities of the 2.7-μ CO2 band at 1200°, 1500°, and 1800°K. Total pressure =1 atm. Path length 3.12 cm±5% (p×l) = 1.03 (cm·atm) at 1200°K (solid curve), 1.35 (cm·atm) at 1500°K (short dashes) and 1.65 (cm·atm) at 1800°K (long dashes). Normalized optical path, u = 0.245 (cm atm)STP±5%.

F. 6
F. 6

Comparison of spectral emissivities of the 2.7-μ CO2 band at 1200°K. (Total pressure = 1 atm; path length 3.12 cm±5%; (p×l) = 1.03 (cm·atm); normalized optical path, u = 0.245 (cm·atm)STP±5%). Short dashes, Burch and Gryvnak; long dashes, Tourin; dot-dash, Malkmus (theoretical); solid curve, present (experimental).

F. 7
F. 7

Comparison of experimental (solid curve) and calculated spectral emissivities (dashed) of the 2.7-μ CO2 band at 1800°K. [Total pressure = 1 atm; p×l = 1.65 (cm·atm).]

F. 8
F. 8

Comparison of experimental and theoretical integrated intensities of the 2.7-μ CO2 band versus temperature. Experimental: crosses, Breeze and Ferriso; Square, Eggers and Crawford; Triangles, present results (with spread marked).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

( ν ) = 1 [ I ( ν ) / I 0 ( ν ) ] ,
N 0 ( ν , T ) = N ( ν ) / ( ν ) ,
N 0 ( ν , T ) = C 1 ν 3 [ exp ( C 2 ν / T ) 1 ] 1 ,
u = p CO 2 l T 0 / T ,
( ν , T ) = G ( ν ) N 0 ( ν , T B ) / B ( ν ) N 0 ( ν , T ) ,
( ν , T ) = 1 exp [ ( S ¯ / d ) p l ]
( ν , T ) = 1 exp [ u u ln 1 1 ] ,
α ( T ) = band k ( ν ) d ν = 1 u band lim u 0 ln [ 1 1 ] d ν ,
α ( T ) = α 0 ϕ ( T ) ,
ϕ ( T ) = [ 1 exp ( h c ω 1 k T ) ] 1 [ 1 exp ( h c ω 3 k T ) ] 1 × { 1 exp [ h c ( ω 1 + ω 3 ) k T ] } ,