Abstract

Refractive properties of barium fluoride are discussed. The refractive index, n, was determined at 25°C for 46 measured wavelengths from 0.2652 μ in the ultraviolet to 10.346 in the infrared. The dispersion equation

n21=0.643356λ2λ2(0.057789)2+0.506762λ2λ2(0.10968)2+3.8261λ2λ2(46.3864)2,
where λ is expressed in microns was found to fit the measured values with an average absolute residual of 1.91×10−5. A tentative average thermal coefficient of index dn/dt for the measured spectral range is −12×10−6/°C Dispersive quantities which indicate the expected relative dispersion, chromatic aberration, and the effect of index on resolution are graphically presented. A review of transmittance data from the literature is also presented.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Jones, R. V. Jones, and R. W. Stevenson, Proc. Phys. Soc. (London) B65, 906 (1962).
  2. S. S. Ballard, L. S. Combes, and K. A. McCarthy, J. Opt. Soc. Am. 42, 684 (1952).
    [Crossref]
  3. S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, “IRIA State-of-the-Art Report: Optical Materials for Infrared Instrumentation,” The University of Michigan, Report No. 2389-11-S (January1959). Now with a supplement datedApril 1961.
  4. T. A. Chubb, J. Opt. Soc. Am. 46, 362, (1956).
    [Crossref]
  5. J. M. Gordon, J. Opt. Soc. Am. 48, 583, (1958).
    [Crossref]
  6. The Harshaw Chemical Company, Cleveland, Ohio.
  7. O. N. Stavroudis and L. E. Sutton, J. Opt. Soc. Am. 51, 368L (1961).
    [Crossref]
  8. L. E. Sutton and O. N. Stavroudis, J. Opt. Soc. Am. 51, 901 (1961).
    [Crossref]
  9. A. R. Downie, M. C. Magoon, T. Purcell, and B. Crawford, J. Opt. Soc. Am. 43, 941 (1953).
    [Crossref]
  10. M. Herzberger and C. D. Salzberg, J. Opt. Soc. Am. 52, 420 (1962).
    [Crossref]
  11. R. M. Davidson, J. Opt. Soc. Am. 53, 1006 (1963).
    [Crossref]
  12. I. H. Malitson, Appl. Opt. 2, 1103 (1963).
    [Crossref]

1963 (2)

1962 (2)

D. A. Jones, R. V. Jones, and R. W. Stevenson, Proc. Phys. Soc. (London) B65, 906 (1962).

M. Herzberger and C. D. Salzberg, J. Opt. Soc. Am. 52, 420 (1962).
[Crossref]

1961 (2)

O. N. Stavroudis and L. E. Sutton, J. Opt. Soc. Am. 51, 368L (1961).
[Crossref]

L. E. Sutton and O. N. Stavroudis, J. Opt. Soc. Am. 51, 901 (1961).
[Crossref]

1958 (1)

1956 (1)

1953 (1)

1952 (1)

Ballard, S. S.

S. S. Ballard, L. S. Combes, and K. A. McCarthy, J. Opt. Soc. Am. 42, 684 (1952).
[Crossref]

S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, “IRIA State-of-the-Art Report: Optical Materials for Infrared Instrumentation,” The University of Michigan, Report No. 2389-11-S (January1959). Now with a supplement datedApril 1961.

Chubb, T. A.

Combes, L. S.

Crawford, B.

Davidson, R. M.

Downie, A. R.

Gordon, J. M.

Herzberger, M.

Jones, D. A.

D. A. Jones, R. V. Jones, and R. W. Stevenson, Proc. Phys. Soc. (London) B65, 906 (1962).

Jones, R. V.

D. A. Jones, R. V. Jones, and R. W. Stevenson, Proc. Phys. Soc. (London) B65, 906 (1962).

Magoon, M. C.

Malitson, I. H.

McCarthy, K. A.

S. S. Ballard, L. S. Combes, and K. A. McCarthy, J. Opt. Soc. Am. 42, 684 (1952).
[Crossref]

S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, “IRIA State-of-the-Art Report: Optical Materials for Infrared Instrumentation,” The University of Michigan, Report No. 2389-11-S (January1959). Now with a supplement datedApril 1961.

Purcell, T.

Salzberg, C. D.

Stavroudis, O. N.

O. N. Stavroudis and L. E. Sutton, J. Opt. Soc. Am. 51, 368L (1961).
[Crossref]

L. E. Sutton and O. N. Stavroudis, J. Opt. Soc. Am. 51, 901 (1961).
[Crossref]

Stevenson, R. W.

D. A. Jones, R. V. Jones, and R. W. Stevenson, Proc. Phys. Soc. (London) B65, 906 (1962).

Sutton, L. E.

O. N. Stavroudis and L. E. Sutton, J. Opt. Soc. Am. 51, 368L (1961).
[Crossref]

L. E. Sutton and O. N. Stavroudis, J. Opt. Soc. Am. 51, 901 (1961).
[Crossref]

Wolfe, W. L.

S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, “IRIA State-of-the-Art Report: Optical Materials for Infrared Instrumentation,” The University of Michigan, Report No. 2389-11-S (January1959). Now with a supplement datedApril 1961.

Appl. Opt. (1)

J. Opt. Soc. Am. (8)

Proc. Phys. Soc. (London) (1)

D. A. Jones, R. V. Jones, and R. W. Stevenson, Proc. Phys. Soc. (London) B65, 906 (1962).

Other (2)

The Harshaw Chemical Company, Cleveland, Ohio.

S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, “IRIA State-of-the-Art Report: Optical Materials for Infrared Instrumentation,” The University of Michigan, Report No. 2389-11-S (January1959). Now with a supplement datedApril 1961.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

F. 1
F. 1

Precision minimum-deviation spectrometer. The prism P is rotated at one-half the rotation rate of the telescope mirror T and detector D assembly by gear system G thus maintaining the condition of minimum deviation for any wavelength. The observer takes a scale reading corresponding to a known wavelength of an emission line or an absorption band after having made settings by hand for maximum or minimum response.

F. 2
F. 2

Refractive index of barium fluoride. The dispersion formula is valid for interpolation to five decimal places over the measured wavelength range (see Table II for residuals).

F. 3
F. 3

The quantity d n / d λ 1 ndefines the dispersion relative to deviation at any wavelength λ for barium fluoride. Dispersion is minimum near 2 μ.

F. 4
F. 4

Reciprocal relative dispersion of barium fluoride. Contribution to chromatic aberration decreases as value of [ d n / d λ ( 1 n ) ] 1increases.

F. 5
F. 5

Dependence of resolution at a chosen wavelength upon dispersion of barium fluoride. Expected resolution improves as value of (λdn/dλ)−1 decreases.

F. 6
F. 6

Comparison of refractive index of two samples of barium fluoride. The commercial sample is higher in index by an average value of 46×10−5 for the visible region.

Tables (4)

Tables Icon

Table I Refractive index and thermal coefficient of index of barium fluoride. (MIT experimental sample, year 1944).

Tables Icon

Table II Observed and computed refractive index of barium fluoride at 25°C.

Tables Icon

Table III Constants of the dispersion equation n2−1=Σ [Ajλ2/(λ2−λj2)] at 25°C.

Tables Icon

Table IV Computed refractive index and dispersion of BaF2 at 25°C for regular wavelength intervals.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 1 = 0.643356 λ 2 λ 2 ( 0.057789 ) 2 + 0.506762 λ 2 λ 2 ( 0.10968 ) 2 + 3.8261 λ 2 λ 2 ( 46.3864 ) 2 ,
d n / d λ 1 n
[ d n / d λ ( 1 n ) ] 1