Abstract

Contrary to a common misconception, it is possible to carry out absolute wavelength measurements with a Fabry–Perot interferometer having dielectric coatings even with no preliminary knowledge of the dispersion of phase change upon reflection. The method involves only a trivial change from that described by Meissner in his classic article on interference spectroscopy. The origin of interferometric wavelength corrections for phase change effects is discussed to emphasize that it is not dispersion of phase change but rather dispersion of optical path which necessitates such corrections.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Jackson and K. N. Rao, J. Opt. Soc. Am. 53, 558 (1963).
    [Crossref]
  2. I. G. Priest, Bull. U. S. Bur. Std. 6, 573 (1909–10).
    [Crossref]
  3. P. W. Merrill, Bull. U. S. Bur. Std. 14, 159 (1918).
    [Crossref]
  4. K. W. Meissner, J. Opt. Soc. Am. 31, 405 (1941).
    [Crossref]
  5. H. Barrell and P. Teasdale-Buckell, Proc. Phys. Soc. (London) B64, 413 (1951).
  6. D. H. Rank, A. H. Guenther, J. N. Shearer, and T. A. Wiggins, J. Opt. Soc. Am. 47, 144 (1957).
    [Crossref]
  7. C. J. Koester, J. Res. Natl. Bur. Std. 64A, 191 (1960).
    [Crossref]
  8. D. H. Rank and H. E. Bennett, J. Opt. Soc. Am. 45, 69 (1955).
    [Crossref]
  9. P. W. Baumeister and F. A. Jenkins, J. Opt. Soc. Am. 47, 57 (1957).
    [Crossref]
  10. J. Bauer, Ann. Physik 20, 481 (1934).
    [Crossref]
  11. C. F. Bruce and P. E. Ciddor, J. Opt. Soc. Am. 50, 295 (1960).
    [Crossref]
  12. Priest employed a Fabry–Perot interferometer with continuously variable spacing. He measured only the displacement of the movable mirror and calculated p directly from 2t/λ. Since t′ and t″ were unknown, the question of determining the corresponding integers p′ and p″ did not arise.
  13. P. E. Ciddor, Opt. Acta 7, 399 (1960).
    [Crossref]

1963 (1)

1960 (3)

C. J. Koester, J. Res. Natl. Bur. Std. 64A, 191 (1960).
[Crossref]

C. F. Bruce and P. E. Ciddor, J. Opt. Soc. Am. 50, 295 (1960).
[Crossref]

P. E. Ciddor, Opt. Acta 7, 399 (1960).
[Crossref]

1957 (2)

1955 (1)

1951 (1)

H. Barrell and P. Teasdale-Buckell, Proc. Phys. Soc. (London) B64, 413 (1951).

1941 (1)

1934 (1)

J. Bauer, Ann. Physik 20, 481 (1934).
[Crossref]

1918 (1)

P. W. Merrill, Bull. U. S. Bur. Std. 14, 159 (1918).
[Crossref]

Barrell, H.

H. Barrell and P. Teasdale-Buckell, Proc. Phys. Soc. (London) B64, 413 (1951).

Bauer, J.

J. Bauer, Ann. Physik 20, 481 (1934).
[Crossref]

Baumeister, P. W.

Bennett, H. E.

Bruce, C. F.

Ciddor, P. E.

Guenther, A. H.

Jackson, D. A.

Jenkins, F. A.

Koester, C. J.

C. J. Koester, J. Res. Natl. Bur. Std. 64A, 191 (1960).
[Crossref]

Meissner, K. W.

Merrill, P. W.

P. W. Merrill, Bull. U. S. Bur. Std. 14, 159 (1918).
[Crossref]

Priest, I. G.

I. G. Priest, Bull. U. S. Bur. Std. 6, 573 (1909–10).
[Crossref]

Rank, D. H.

Rao, K. N.

Shearer, J. N.

Teasdale-Buckell, P.

H. Barrell and P. Teasdale-Buckell, Proc. Phys. Soc. (London) B64, 413 (1951).

Wiggins, T. A.

Ann. Physik (1)

J. Bauer, Ann. Physik 20, 481 (1934).
[Crossref]

Bull. U. S. Bur. Std. (2)

I. G. Priest, Bull. U. S. Bur. Std. 6, 573 (1909–10).
[Crossref]

P. W. Merrill, Bull. U. S. Bur. Std. 14, 159 (1918).
[Crossref]

J. Opt. Soc. Am. (6)

J. Res. Natl. Bur. Std. (1)

C. J. Koester, J. Res. Natl. Bur. Std. 64A, 191 (1960).
[Crossref]

Opt. Acta (1)

P. E. Ciddor, Opt. Acta 7, 399 (1960).
[Crossref]

Proc. Phys. Soc. (London) (1)

H. Barrell and P. Teasdale-Buckell, Proc. Phys. Soc. (London) B64, 413 (1951).

Other (1)

Priest employed a Fabry–Perot interferometer with continuously variable spacing. He measured only the displacement of the movable mirror and calculated p directly from 2t/λ. Since t′ and t″ were unknown, the question of determining the corresponding integers p′ and p″ did not arise.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( p s + s ) λ s = 2 t 2 τ s , ( p s + s ) λ s = 2 t 2 τ s , ( p x + x ) λ x = 2 t 2 τ x , ( p x + x ) λ x = 2 t 2 τ x ,
[ ( p s p s ) + ( s s ) ] λ s = 2 ( t t ) , [ ( p x p x ) + ( x x ) ] λ x = 2 ( t t ) .
[ p s + ( s s ) ] λ s = 2 t , [ p x + ( x x ) ] λ x = 2 t .
λ x = [ p s + ( s s ) λ s ] / [ p x + ( x x ) ] .
( p x + x ) λ x ( p s + s ) λ s ,
( p + ) λ = 2 ( t β λ / 2 π ) = 2 t λ λ δ / π ,
( p + 1 + ) λ = 2 t λ δ / π .
( p s + s ) λ s = 2 t λ s δ s / π
( p x + x ) λ x = 2 t λ x δ x / π
λ x = λ s p s + s p x + x + λ s δ s λ x δ x π ( p x + x ) ,
λ x δ x λ s δ s = 0 ,
δ s ( λ s λ x ) π ( p x + x ) + λ x ( δ s δ x ) π ( p x + x ) .