Abstract

The fundamental resolving power of optical systems is defined by use of decision theory. For binary decisions in the presence of Gaussian noise, the probability of a correct decision is determined by the quadratic content of the difference image and the noise variance per unit of area. In the spatial frequency domain the probability of correct decision involves the integral of the power spectrum of the difference image and the noise variance per unit of area. The merit of a particular optical system for the performance of a specific binary decision task may be evaluated by use of a formula involving its modulation transfer function. The resolution of two monochromatic, incoherent point sources under conditions of high background radiation is discussed, as an illustrative example. The resolution of two point sources is limited only by the precision with which the flux density at all points in the image plane can be determined. The manner in which this increased precision can be obtained by increasing the period of observation is discussed, for the case of a photon-counting detector.

© 1964 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Alternative approach in decision theory as applied to the resolution of two point images

David A. Nahrstedt and Larry C. Schooley
J. Opt. Soc. Am. 69(6) 910_1-912 (1979)

Diffraction and Resolving Power*

J. L. Harris
J. Opt. Soc. Am. 54(7) 931-936 (1964)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription