Abstract

Arc lamps with efficiencies in the range from 70 to 110 lm/W, with good color rendition, have been made by a combination of metallic iodides and mercury in a medium-pressure vapor arc. Sodium iodide and thallium iodide with mercury were found to give the highest efficiency although other compounds such as indium iodide also provide improved color rendition. Careful control of the vapor pressure of the components, attained by control of lamp temperature and correct proportion of the iodides, is necessary in order to attain good color balance and efficiency. In case of arc tubes similar in dimensions to the 400-W mercury lamp, the new lamps operate with similar volt–ampere characteristics.

Data on the luminous efficiency, spectral characteristics, chemical reactions, and arc performance are shown and discussed. Several effects such as reduction of excitation temperature by the iodides appear to be responsible for increased efficiency.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Larson, H. D. Fraser, W. V. Cushing, and M. C. Unglert, Preprint 29, Meeting of the Illuminating Engineering Society, Dallas, 9–14 September 1962.
  2. E. C. Martt, L. J. Smialek, and A. C. Green, Preprint 2, Meeting of the Illuminating Engineering Society, Detroit, 8–13 September 1963.
  3. W. Elenbaas, The High Pressure Mercury Vapor Discharge (Interscience Publishers, Inc., New York, 1951).
  4. W. G. Fastie, J. Opt. Soc. Am. 42, 641 (1952).
    [CrossRef]
  5. Carl Kenty, J. Appl. Phys. 21, 1309 (1950).
    [CrossRef]
  6. T. Holstein, Phys. Rev. 72, 1212 (1947).
    [CrossRef]
  7. G. H. Reiling, IRE Trans. Prof. Group Electron Devices ED-9, No. 3, May1962.

1962 (1)

G. H. Reiling, IRE Trans. Prof. Group Electron Devices ED-9, No. 3, May1962.

1952 (1)

1950 (1)

Carl Kenty, J. Appl. Phys. 21, 1309 (1950).
[CrossRef]

1947 (1)

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

Cushing, W. V.

D. A. Larson, H. D. Fraser, W. V. Cushing, and M. C. Unglert, Preprint 29, Meeting of the Illuminating Engineering Society, Dallas, 9–14 September 1962.

Elenbaas, W.

W. Elenbaas, The High Pressure Mercury Vapor Discharge (Interscience Publishers, Inc., New York, 1951).

Fastie, W. G.

Fraser, H. D.

D. A. Larson, H. D. Fraser, W. V. Cushing, and M. C. Unglert, Preprint 29, Meeting of the Illuminating Engineering Society, Dallas, 9–14 September 1962.

Green, A. C.

E. C. Martt, L. J. Smialek, and A. C. Green, Preprint 2, Meeting of the Illuminating Engineering Society, Detroit, 8–13 September 1963.

Holstein, T.

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

Kenty, Carl

Carl Kenty, J. Appl. Phys. 21, 1309 (1950).
[CrossRef]

Larson, D. A.

D. A. Larson, H. D. Fraser, W. V. Cushing, and M. C. Unglert, Preprint 29, Meeting of the Illuminating Engineering Society, Dallas, 9–14 September 1962.

Martt, E. C.

E. C. Martt, L. J. Smialek, and A. C. Green, Preprint 2, Meeting of the Illuminating Engineering Society, Detroit, 8–13 September 1963.

Reiling, G. H.

G. H. Reiling, IRE Trans. Prof. Group Electron Devices ED-9, No. 3, May1962.

Smialek, L. J.

E. C. Martt, L. J. Smialek, and A. C. Green, Preprint 2, Meeting of the Illuminating Engineering Society, Detroit, 8–13 September 1963.

Unglert, M. C.

D. A. Larson, H. D. Fraser, W. V. Cushing, and M. C. Unglert, Preprint 29, Meeting of the Illuminating Engineering Society, Dallas, 9–14 September 1962.

IRE Trans. Prof. Group Electron Devices (1)

G. H. Reiling, IRE Trans. Prof. Group Electron Devices ED-9, No. 3, May1962.

J. Appl. Phys. (1)

Carl Kenty, J. Appl. Phys. 21, 1309 (1950).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. (1)

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

Other (3)

D. A. Larson, H. D. Fraser, W. V. Cushing, and M. C. Unglert, Preprint 29, Meeting of the Illuminating Engineering Society, Dallas, 9–14 September 1962.

E. C. Martt, L. J. Smialek, and A. C. Green, Preprint 2, Meeting of the Illuminating Engineering Society, Detroit, 8–13 September 1963.

W. Elenbaas, The High Pressure Mercury Vapor Discharge (Interscience Publishers, Inc., New York, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Comparison of the high-efficiency Hg-Tl–NaI arc lamp with mercury vapor lamp and other arc lamps which show improved red color.

Fig. 2
Fig. 2

Lamp efficiency vs arc watt input for a 4-atm mercury arc containing a triple component additive NaI–TlI–InI3 and arcs containing CsI, RbI, KI, and MnI2.

Fig. 3
Fig. 3

Lamp efficiency vs arc watt input for a 4-atm mercury arc containing TlI, BaI2, NaI, CaI2, and LiI as single additives.

Fig. 4
Fig. 4

Lamp efficiency vs arc-watt input for Tl, NaI arcs containing noble gases: Xe, He, Xe–He, and Ne. Also shown are mercury–metallic iodide arcs containing single additives: TlI, CdI2, GaI2, SeI2, and EuI2.

Fig. 5
Fig. 5

Lamp efficiency vs arc-watt input for 4-atm mercury arcs containing CdI2, ZnI2, SnI2, PbI2, and SrI2. A quartz-wool thermal shield was used to raise the temperature of the SrI2 additive. These elements, as elements, have been used in the past to improve the red color of Hg arcs.

Fig. 6
Fig. 6

Lamp efficiency vs arc-watt input for 4-atm mercury lamps containing the iodides of Ir, Co, Ag, Hf, Fe, and Sb.

Fig. 7
Fig. 7

Lamp efficiency vs arc-watt input for a 4-atm mercury lamp containing iodides of Pt, Ag, Mg, and Ni.

Fig. 8
Fig. 8

Relative lamp efficiency vs temperature for a Hg–NaI–TlI lamp and a 4-atm mercury lamp.

Fig. 9
Fig. 9

Comparison of lamp efficiency vs arc-watt input for various tube diameters.

Fig. 10
Fig. 10

Relative transmittance vs wavelength of the monochromator used in recording spectra of arc lamps.

Fig. 11
Fig. 11

Spectra from 2000 to 16 000 Å of a mercury lamp and Hg–NaI–TlI arc lamps for several power inputs.

Fig. 12
Fig. 12

Spectra of Hg–NaI, Hg–KI, Hg–RbI, and Hg–CsI arc lamps.

Fig. 13
Fig. 13

Spectra of Hg–MgI2, Hg–CaI2, Hg–SrI2, and Hg-BaI2 arc lamps.

Fig. 14
Fig. 14

Spectra of Hg–LiI, Hg–GaI3, Hg–NaI, TlI–InI3, and Hg–TlI arc lamps at 400-W input.

Fig. 15
Fig. 15

Voltage, current, and light-output waveforms of a Hg–NaI–TlI arc lamp and a 4-atm mercury lamp, (a) Hg–NaI–TlI lamp; p = 400 W. (b) Hg lamp; p = 400 W.

Fig. 16
Fig. 16

Voltage gradient in a mercury arc lamp at 2-A dc arc current.

Fig. 17
Fig. 17

Voltage gradient in a Hg–NaI–TlI arc lamp at 2-A dc arc current.

Fig. 18
Fig. 18

Vapor pressure vs temperature for several components used in this work.

Fig. 19
Fig. 19

Excitation potentials for mercury, sodium, thallium, and cesium. Solid lines are ionization levels and dotted lines are metastable or resonance levels.