Abstract

The electrical conductivity in a zinc oxide thin film is increased by light absorption in an adjacent layer of eosin (Na). Activation spectra show that response is excited by irradiation in the eosin monomer and dimer absorption bands and in the long wavelength tail induced by the zinc oxide substrate. The photoresponse in bilayers varies with the one-half power of the illuminance, builds up and decays by first-order processes, and is proportional to the zinc oxide dark current. The temperature dependence approximately follows the zinc oxide dark conductivity. Measurements with voltaic couples show that charge transfer takes place across the interface. Possible mechanisms are discussed.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The subject of photographic sensitization is reviewed by W. West, J. Chem. Phys. 66, 2398 (1962).
    [Crossref]
  2. A review of organic dye photoconduction is given by H. Inokuchi and H. Akamatu, Solid State Phys. 12, 133–136 (1961).
  3. A. G. Gol’dman and I. A. Akimov, Zh. Fiz. Khim. 27, 355 (1938).
  4. R. C. Nelson, J. Chem. Phys. 29, 388 (1958).
    [Crossref]
  5. E. Putzeiko and A. Terenin, Zh. Fiz. Khim. 23, 676 (1949); Dokl. Akad. Nauk SSSR 70, 401 (1950); ibid.  90, 1005 (1953).
  6. E. K. Putzeiko, Dokl. Akad. Nauk SSSR 129, 303 (1959) [Soviet Phys.—Doklady 4, 1268 (1959–60)].
  7. Y. Hishiki, H. Tamura, S. Namba, and K. Taki, Rept. Inst. Phys. Chem. Res. (Tokyo) 36, 386 (1960).
  8. S. Namba and Y. Hishiki, Rept. Inst. Phys. Chem. Res. (Tokyo) 39, 27 (1963).
  9. The zinc films were evaporated on an invisible copper sublayer, which had essentially infinite electrical resistance. Check experiments with a heavy copper base corroborated that diffusion of copper was not involved in sensitization. Granular zinc oxide films evaporated directly on ground glass also showed sensitization by eosin with qualitatively similar properties.
  10. L. Koch, J. Assoc. Offic. Agr. Chemists 39, 397 (1956).
  11. The photoconductivity of zinc oxide thin films is reviewed by G. Heiland, E. Mollwo, and F. Stöckmann, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1959), Vol. 8, pp. 191–323.
    [Crossref]
  12. R. C. Nelson, J. Opt. Soc. Am. 46, 13 (1956); ibid. 51, 1182 (1961).
    [Crossref]
  13. N. Petruzzella and R. C. Nelson, J. Chem. Phys. 37, 3010 (1962).
    [Crossref]
  14. This mechanism is reviewed by R. H. Bube, Photoconductivity of Solids (John Wiley & Sons, Inc., New York, 1960), pp. 171–174.
  15. H. Weiss, Z. Physik 132, 335 (1952).
    [Crossref]
  16. A model for the fast photoconductivity of ZnO films based on hole capture by interstitial zinc was proposed by E. Mollwo, Photoconductivity Conference, edited by R. G. Breckenridge and et al. (John Wiley & Sons, Inc., New York, 1956), pp. 509–528.
  17. The chemical reactivity of triplet eosin is reviewed by L. I. Grossweiner in the Proceedings of the International Symposium on Physical Processes in Radiation Biology (Academic Press Inc., New York) (to be published).
  18. F. Wilessow and A. Terenin, Naturwiss. 46, 167 (1959).
    [Crossref]
  19. R. C. Nelson, J. Opt. Soc. Am. 51, 1186 (1961).
    [Crossref]

1963 (1)

S. Namba and Y. Hishiki, Rept. Inst. Phys. Chem. Res. (Tokyo) 39, 27 (1963).

1962 (2)

The subject of photographic sensitization is reviewed by W. West, J. Chem. Phys. 66, 2398 (1962).
[Crossref]

N. Petruzzella and R. C. Nelson, J. Chem. Phys. 37, 3010 (1962).
[Crossref]

1961 (2)

R. C. Nelson, J. Opt. Soc. Am. 51, 1186 (1961).
[Crossref]

A review of organic dye photoconduction is given by H. Inokuchi and H. Akamatu, Solid State Phys. 12, 133–136 (1961).

1960 (1)

Y. Hishiki, H. Tamura, S. Namba, and K. Taki, Rept. Inst. Phys. Chem. Res. (Tokyo) 36, 386 (1960).

1959 (2)

E. K. Putzeiko, Dokl. Akad. Nauk SSSR 129, 303 (1959) [Soviet Phys.—Doklady 4, 1268 (1959–60)].

F. Wilessow and A. Terenin, Naturwiss. 46, 167 (1959).
[Crossref]

1958 (1)

R. C. Nelson, J. Chem. Phys. 29, 388 (1958).
[Crossref]

1956 (2)

L. Koch, J. Assoc. Offic. Agr. Chemists 39, 397 (1956).

R. C. Nelson, J. Opt. Soc. Am. 46, 13 (1956); ibid. 51, 1182 (1961).
[Crossref]

1952 (1)

H. Weiss, Z. Physik 132, 335 (1952).
[Crossref]

1949 (1)

E. Putzeiko and A. Terenin, Zh. Fiz. Khim. 23, 676 (1949); Dokl. Akad. Nauk SSSR 70, 401 (1950); ibid.  90, 1005 (1953).

1938 (1)

A. G. Gol’dman and I. A. Akimov, Zh. Fiz. Khim. 27, 355 (1938).

Akamatu, H.

A review of organic dye photoconduction is given by H. Inokuchi and H. Akamatu, Solid State Phys. 12, 133–136 (1961).

Akimov, I. A.

A. G. Gol’dman and I. A. Akimov, Zh. Fiz. Khim. 27, 355 (1938).

Bube, R. H.

This mechanism is reviewed by R. H. Bube, Photoconductivity of Solids (John Wiley & Sons, Inc., New York, 1960), pp. 171–174.

Gol’dman, A. G.

A. G. Gol’dman and I. A. Akimov, Zh. Fiz. Khim. 27, 355 (1938).

Grossweiner, L. I.

The chemical reactivity of triplet eosin is reviewed by L. I. Grossweiner in the Proceedings of the International Symposium on Physical Processes in Radiation Biology (Academic Press Inc., New York) (to be published).

Heiland, G.

The photoconductivity of zinc oxide thin films is reviewed by G. Heiland, E. Mollwo, and F. Stöckmann, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1959), Vol. 8, pp. 191–323.
[Crossref]

Hishiki, Y.

S. Namba and Y. Hishiki, Rept. Inst. Phys. Chem. Res. (Tokyo) 39, 27 (1963).

Y. Hishiki, H. Tamura, S. Namba, and K. Taki, Rept. Inst. Phys. Chem. Res. (Tokyo) 36, 386 (1960).

Inokuchi, H.

A review of organic dye photoconduction is given by H. Inokuchi and H. Akamatu, Solid State Phys. 12, 133–136 (1961).

Koch, L.

L. Koch, J. Assoc. Offic. Agr. Chemists 39, 397 (1956).

Mollwo, E.

The photoconductivity of zinc oxide thin films is reviewed by G. Heiland, E. Mollwo, and F. Stöckmann, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1959), Vol. 8, pp. 191–323.
[Crossref]

A model for the fast photoconductivity of ZnO films based on hole capture by interstitial zinc was proposed by E. Mollwo, Photoconductivity Conference, edited by R. G. Breckenridge and et al. (John Wiley & Sons, Inc., New York, 1956), pp. 509–528.

Namba, S.

S. Namba and Y. Hishiki, Rept. Inst. Phys. Chem. Res. (Tokyo) 39, 27 (1963).

Y. Hishiki, H. Tamura, S. Namba, and K. Taki, Rept. Inst. Phys. Chem. Res. (Tokyo) 36, 386 (1960).

Nelson, R. C.

N. Petruzzella and R. C. Nelson, J. Chem. Phys. 37, 3010 (1962).
[Crossref]

R. C. Nelson, J. Opt. Soc. Am. 51, 1186 (1961).
[Crossref]

R. C. Nelson, J. Chem. Phys. 29, 388 (1958).
[Crossref]

R. C. Nelson, J. Opt. Soc. Am. 46, 13 (1956); ibid. 51, 1182 (1961).
[Crossref]

Petruzzella, N.

N. Petruzzella and R. C. Nelson, J. Chem. Phys. 37, 3010 (1962).
[Crossref]

Putzeiko, E.

E. Putzeiko and A. Terenin, Zh. Fiz. Khim. 23, 676 (1949); Dokl. Akad. Nauk SSSR 70, 401 (1950); ibid.  90, 1005 (1953).

Putzeiko, E. K.

E. K. Putzeiko, Dokl. Akad. Nauk SSSR 129, 303 (1959) [Soviet Phys.—Doklady 4, 1268 (1959–60)].

Stöckmann, F.

The photoconductivity of zinc oxide thin films is reviewed by G. Heiland, E. Mollwo, and F. Stöckmann, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1959), Vol. 8, pp. 191–323.
[Crossref]

Taki, K.

Y. Hishiki, H. Tamura, S. Namba, and K. Taki, Rept. Inst. Phys. Chem. Res. (Tokyo) 36, 386 (1960).

Tamura, H.

Y. Hishiki, H. Tamura, S. Namba, and K. Taki, Rept. Inst. Phys. Chem. Res. (Tokyo) 36, 386 (1960).

Terenin, A.

F. Wilessow and A. Terenin, Naturwiss. 46, 167 (1959).
[Crossref]

E. Putzeiko and A. Terenin, Zh. Fiz. Khim. 23, 676 (1949); Dokl. Akad. Nauk SSSR 70, 401 (1950); ibid.  90, 1005 (1953).

Weiss, H.

H. Weiss, Z. Physik 132, 335 (1952).
[Crossref]

West, W.

The subject of photographic sensitization is reviewed by W. West, J. Chem. Phys. 66, 2398 (1962).
[Crossref]

Wilessow, F.

F. Wilessow and A. Terenin, Naturwiss. 46, 167 (1959).
[Crossref]

Dokl. Akad. Nauk SSSR (1)

E. K. Putzeiko, Dokl. Akad. Nauk SSSR 129, 303 (1959) [Soviet Phys.—Doklady 4, 1268 (1959–60)].

J. Assoc. Offic. Agr. Chemists (1)

L. Koch, J. Assoc. Offic. Agr. Chemists 39, 397 (1956).

J. Chem. Phys. (3)

N. Petruzzella and R. C. Nelson, J. Chem. Phys. 37, 3010 (1962).
[Crossref]

The subject of photographic sensitization is reviewed by W. West, J. Chem. Phys. 66, 2398 (1962).
[Crossref]

R. C. Nelson, J. Chem. Phys. 29, 388 (1958).
[Crossref]

J. Opt. Soc. Am. (2)

Naturwiss. (1)

F. Wilessow and A. Terenin, Naturwiss. 46, 167 (1959).
[Crossref]

Rept. Inst. Phys. Chem. Res. (Tokyo) (2)

Y. Hishiki, H. Tamura, S. Namba, and K. Taki, Rept. Inst. Phys. Chem. Res. (Tokyo) 36, 386 (1960).

S. Namba and Y. Hishiki, Rept. Inst. Phys. Chem. Res. (Tokyo) 39, 27 (1963).

Solid State Phys. (1)

A review of organic dye photoconduction is given by H. Inokuchi and H. Akamatu, Solid State Phys. 12, 133–136 (1961).

Z. Physik (1)

H. Weiss, Z. Physik 132, 335 (1952).
[Crossref]

Zh. Fiz. Khim. (2)

A. G. Gol’dman and I. A. Akimov, Zh. Fiz. Khim. 27, 355 (1938).

E. Putzeiko and A. Terenin, Zh. Fiz. Khim. 23, 676 (1949); Dokl. Akad. Nauk SSSR 70, 401 (1950); ibid.  90, 1005 (1953).

Other (5)

The zinc films were evaporated on an invisible copper sublayer, which had essentially infinite electrical resistance. Check experiments with a heavy copper base corroborated that diffusion of copper was not involved in sensitization. Granular zinc oxide films evaporated directly on ground glass also showed sensitization by eosin with qualitatively similar properties.

A model for the fast photoconductivity of ZnO films based on hole capture by interstitial zinc was proposed by E. Mollwo, Photoconductivity Conference, edited by R. G. Breckenridge and et al. (John Wiley & Sons, Inc., New York, 1956), pp. 509–528.

The chemical reactivity of triplet eosin is reviewed by L. I. Grossweiner in the Proceedings of the International Symposium on Physical Processes in Radiation Biology (Academic Press Inc., New York) (to be published).

This mechanism is reviewed by R. H. Bube, Photoconductivity of Solids (John Wiley & Sons, Inc., New York, 1960), pp. 171–174.

The photoconductivity of zinc oxide thin films is reviewed by G. Heiland, E. Mollwo, and F. Stöckmann, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1959), Vol. 8, pp. 191–323.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental arrangement for eosin–zinc oxide bilayers (a) and voltaic couples (b).

Fig. 2
Fig. 2

Activation spectra for sensitized photoeffect of bilayers and the absorption spectrum of an eosin layer on a zinc oxide substrate.

Fig. 3
Fig. 3

Typical buildup and decay cycles for irradiation of bilayers with green light at 25°C.

Fig. 4
Fig. 4

Relative photon efficiency for sensitization in bilayers.

Fig. 5
Fig. 5

Dependence of photoresponse in a bilayer on illuminance of red light.

Fig. 6
Fig. 6

Dependence of photoresponse in a bilayer on illuminance of green light.

Fig. 7
Fig. 7

Total photocurrent in a bilayer irradiated simultaneously with “ZnO light” and green light at 25°C. The number to the left of each line is the relative green-light intensity.

Fig. 8
Fig. 8

Temperature dependence of photoresponse in a bilayer for irradiation with red light compared to the temperature dependence of the dark conductivity.

Fig. 9
Fig. 9

Dependence of steady-state photoresponse in a bilayer on dark current.

Fig. 10
Fig. 10

Decay of sensitized photoresponse in a bilayer after green-light irradiation at 25°C, plotted as an exponential function of time.

Fig. 11
Fig. 11

Buildup of sensitized photoresponse in a bilayer for green light irradiation at 25°C, plotted as a first-order process.

Fig. 12
Fig. 12

Buildup and decay of the photocurrent in a voltaic couple for green-light irradiation at 25°C, with different positive bias on the eosin electrode.

Fig. 13
Fig. 13

Steady-state characteristics of a voltaic couple, for green-light irradiation at 25°C.

Tables (1)

Tables Icon

Table I Summary of kinetic data for a representative eosin-ZnO bilayer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i p h = i p h * [ 1 - α e - t / τ 1 - ( 1 - α ) e - t / τ 2 ] ,