Abstract

The occurrence of maximum quantum or thermal detection efficiency (defined here as the ratio of utilized photons or energy to the total emitted by a Planckian radiator) was determined theoretically as a function of the absorption edge and bandwidth of the detector, and the temperature of the Planckian radiator. It is assumed that the quantum or thermal efficiency of the detector is constant within the bandwidth in question and zero elsewhere. The application of the specific results derived here is limited to source–detector combinations where the source spectral energy or photon distribution approximates that of a Planckian radiator. A “noise level” and its effect on the efficiency are not considered in the present analysis. The outcome of the analysis is a series of “displacement laws” which are similar to the Wien displacement law, λmT=0.2898 cm °K.

It is shown that the temperature should be increased for maximum efficiency as the bandwidth of the detector is increased.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wolf, Proc. IRE 48, 1246–1263 (1960).
    [Crossref]
  2. B. Hisdal, J. Opt. Soc. Am. 52, 395–402 (1962).
    [Crossref]
  3. R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford University Press, London, 1957), p. 32.
  4. Reference 3, p. 31.
  5. J. W. M. DuMond and E. R. Cohen, Rev. Mod. Phys. 25, 706–707 (1953).
    [Crossref]

1962 (1)

1960 (1)

M. Wolf, Proc. IRE 48, 1246–1263 (1960).
[Crossref]

1953 (1)

J. W. M. DuMond and E. R. Cohen, Rev. Mod. Phys. 25, 706–707 (1953).
[Crossref]

Chasmar, R. P.

R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford University Press, London, 1957), p. 32.

Cohen, E. R.

J. W. M. DuMond and E. R. Cohen, Rev. Mod. Phys. 25, 706–707 (1953).
[Crossref]

DuMond, J. W. M.

J. W. M. DuMond and E. R. Cohen, Rev. Mod. Phys. 25, 706–707 (1953).
[Crossref]

Hisdal, B.

Jones, F. E.

R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford University Press, London, 1957), p. 32.

Smith, R. A.

R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford University Press, London, 1957), p. 32.

Wolf, M.

M. Wolf, Proc. IRE 48, 1246–1263 (1960).
[Crossref]

J. Opt. Soc. Am. (1)

Proc. IRE (1)

M. Wolf, Proc. IRE 48, 1246–1263 (1960).
[Crossref]

Rev. Mod. Phys. (1)

J. W. M. DuMond and E. R. Cohen, Rev. Mod. Phys. 25, 706–707 (1953).
[Crossref]

Other (2)

R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford University Press, London, 1957), p. 32.

Reference 3, p. 31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table I The conditionsa required for the occurrence of maximum quantum [thermal] defection efficiency as a function of the ratio of bandwidth to absorption edge (p=2[3] and 3[4] for a bandwidth which is independent and for one which is linearly related to the absorption edge, respectively).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

N ν d ν = 2 π c 2 ν 2 d ν e h ν / k T - 1 ,
ν c = ν 0 + Δ ν .
n s = 2 π q m c 2 ν 0 ν 0 + Δ ν ν 2 d ν ( e h ν / k T - 1 ) .
N T = 2 π c 2 0 ν 2 d ν e h ν / k T - 1 = ( 2 π c 2 ) ( k T h ) 3 l 2 ,
Q = n s N T = q m l 2 x 0 x 0 + Δ x x 2 d x e x - 1 ,
x = h ν / k T             and             Δ x = h Δ ν / k T .
d Q d x 0 = q m l 2 { ( x 0 + Δ x ) 2 e x 0 + Δ x - 1 [ d ( x 0 + Δ x ) d x 0 ] - x 0 2 e x 0 - 1 } .
d ( x 0 + Δ x ) / d x 0 = 1 ,
( 1 + ) 2 ( e x 0 - 1 ) - e x 0 ( 1 + ) + 1 = 0 ,
d ( x 0 + Δ x ) / d x 0 = ( 1 + ) ,
( 1 + ) 3 ( e x 0 - 1 ) - e x 0 ( 1 + ) + 1 = 0.
( 1 + ) p ( e x 0 - 1 ) - e x 0 ( 1 + ) + 1 = 0.
x 0 p m 0 = p [ 1 + 1 2 ( p - 1 ) ] [ 1 - exp ( - x 0 p m 0 ) ] 1 + 1 2 x 0 p m 0
T = 15 q T π 4 x 0 x 0 + Δ x x 3 d x e x - 1 .
ν 0 m / T = x 0 m k / h ,
E 0 m / T = x 0 m k ,
λ 0 m T = h c / x 0 m k ,
( Δ λ ) T = h c k x 0 m ( 1 + ) = ( λ 0 m T ) ( 1 + ) ,
= Δ ν / ν 0 = β / ( 1 - β ) ,