Abstract

A simple, completely sealed, discharge resonance lamp operated by a 2450 Mc/sec microwave power is described which emits atomic lines of sufficient intensity to be useful as a photochemical light source.

When a water impurity is present in the lamp, many emission lines appear in the region of wavelength from 1500 to 2000 Å. These impurity lines can be effectively removed by means of a getter or by a suitable cold trap. The pressures of pure Xe or Kr in the resonance lamp, required to give maximum intensity (approximately 5×1014 quanta/sec), are 0.7 and 1.0 mm, respectively. The presence of a CO impurity does not affect the intensity of the resonance lines. After passing through a 1-mm LiF window, the intensity of the Xe resonance line at 1295 Å is about 2% of that at 1470 Å and the intensity of the Kr line at 1165 Å is about 28% of that at 1236 Å. A mixture of the rare gas and He gives more intense light than the pure gas. The lifetime of the rare-gas resonance lamps is approximately 10 h. Lyman alpha (1216 Å) line from excited atomic hydrogen and a group of lines at 1743–45 Å from excited atomic nitrogen may be used as a photochemical light source.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Warneck, Appl. Opt. 1, 721 (1962).
    [CrossRef]
  2. P. Harteck and F. Oppenheimer, Z. Physik. Chem. (Leipzig) B16, 77 (1932).
  3. J. R. Dacey and J. W. Hodgins, Can. J. Res. B28, 90 (1950).
    [CrossRef]
  4. F. J. Comes and E. W. Schlag, Z. Physik. Chem. (Frankfurt) 21, 212 (1959).
    [CrossRef]
  5. E. W. Schlag and F. J. Comes, J. Opt. Soc. Am. 50, 866 (1960).
    [CrossRef]
  6. (a)P. G. Wilkinson and Y. Tanaka, J. Opt. Soc. Am. 45, 344 (1955). (b)P. G. Wilkinson, J. Opt. Soc. Am. 45, 1044 (1955).
  7. P. H. Berning, G. Hass, and R. P. Madden, J. Opt. Soc. Am. 50, 586 (1960).
    [CrossRef]
  8. W. Groth, W. Pessara, and H. J. Rommel, Z. Physik. Chem. (Frankfurt) 32, 192 (1962).
    [CrossRef]
  9. H. Okabe and J. R. McNesby, J. Chem. Phys. 37, 1340 (1962).
    [CrossRef]
  10. Y. Tanaka and M. Zelikoff, J. Opt. Soc. Am. 44, 254 (1954).
    [CrossRef]
  11. C. E. Moore, “An Ultraviolet Multiplet Table,” NBS Circular 488 (1950).
  12. (a)W. Groth, Z. Physik. Chem. (Leipzig) B37, 307 (1937). (b)B. H. Mahan, J. Chem. Phys. 33, 959 (1960).

1962 (3)

P. Warneck, Appl. Opt. 1, 721 (1962).
[CrossRef]

W. Groth, W. Pessara, and H. J. Rommel, Z. Physik. Chem. (Frankfurt) 32, 192 (1962).
[CrossRef]

H. Okabe and J. R. McNesby, J. Chem. Phys. 37, 1340 (1962).
[CrossRef]

1960 (2)

1959 (1)

F. J. Comes and E. W. Schlag, Z. Physik. Chem. (Frankfurt) 21, 212 (1959).
[CrossRef]

1955 (1)

1954 (1)

1950 (2)

C. E. Moore, “An Ultraviolet Multiplet Table,” NBS Circular 488 (1950).

J. R. Dacey and J. W. Hodgins, Can. J. Res. B28, 90 (1950).
[CrossRef]

1937 (1)

(a)W. Groth, Z. Physik. Chem. (Leipzig) B37, 307 (1937). (b)B. H. Mahan, J. Chem. Phys. 33, 959 (1960).

1932 (1)

P. Harteck and F. Oppenheimer, Z. Physik. Chem. (Leipzig) B16, 77 (1932).

Berning, P. H.

Comes, F. J.

E. W. Schlag and F. J. Comes, J. Opt. Soc. Am. 50, 866 (1960).
[CrossRef]

F. J. Comes and E. W. Schlag, Z. Physik. Chem. (Frankfurt) 21, 212 (1959).
[CrossRef]

Dacey, J. R.

J. R. Dacey and J. W. Hodgins, Can. J. Res. B28, 90 (1950).
[CrossRef]

Groth, W.

W. Groth, W. Pessara, and H. J. Rommel, Z. Physik. Chem. (Frankfurt) 32, 192 (1962).
[CrossRef]

(a)W. Groth, Z. Physik. Chem. (Leipzig) B37, 307 (1937). (b)B. H. Mahan, J. Chem. Phys. 33, 959 (1960).

Harteck, P.

P. Harteck and F. Oppenheimer, Z. Physik. Chem. (Leipzig) B16, 77 (1932).

Hass, G.

Hodgins, J. W.

J. R. Dacey and J. W. Hodgins, Can. J. Res. B28, 90 (1950).
[CrossRef]

Madden, R. P.

McNesby, J. R.

H. Okabe and J. R. McNesby, J. Chem. Phys. 37, 1340 (1962).
[CrossRef]

Moore, C. E.

C. E. Moore, “An Ultraviolet Multiplet Table,” NBS Circular 488 (1950).

Okabe, H.

H. Okabe and J. R. McNesby, J. Chem. Phys. 37, 1340 (1962).
[CrossRef]

Oppenheimer, F.

P. Harteck and F. Oppenheimer, Z. Physik. Chem. (Leipzig) B16, 77 (1932).

Pessara, W.

W. Groth, W. Pessara, and H. J. Rommel, Z. Physik. Chem. (Frankfurt) 32, 192 (1962).
[CrossRef]

Rommel, H. J.

W. Groth, W. Pessara, and H. J. Rommel, Z. Physik. Chem. (Frankfurt) 32, 192 (1962).
[CrossRef]

Schlag, E. W.

E. W. Schlag and F. J. Comes, J. Opt. Soc. Am. 50, 866 (1960).
[CrossRef]

F. J. Comes and E. W. Schlag, Z. Physik. Chem. (Frankfurt) 21, 212 (1959).
[CrossRef]

Tanaka, Y.

Warneck, P.

Wilkinson, P. G.

Zelikoff, M.

Appl. Opt. (1)

Can. J. Res. (1)

J. R. Dacey and J. W. Hodgins, Can. J. Res. B28, 90 (1950).
[CrossRef]

J. Chem. Phys. (1)

H. Okabe and J. R. McNesby, J. Chem. Phys. 37, 1340 (1962).
[CrossRef]

J. Opt. Soc. Am. (4)

NBS Circular 488 (1)

C. E. Moore, “An Ultraviolet Multiplet Table,” NBS Circular 488 (1950).

Z. Physik. Chem. (Frankfurt) (2)

W. Groth, W. Pessara, and H. J. Rommel, Z. Physik. Chem. (Frankfurt) 32, 192 (1962).
[CrossRef]

F. J. Comes and E. W. Schlag, Z. Physik. Chem. (Frankfurt) 21, 212 (1959).
[CrossRef]

Z. Physik. Chem. (Leipzig) (2)

P. Harteck and F. Oppenheimer, Z. Physik. Chem. (Leipzig) B16, 77 (1932).

(a)W. Groth, Z. Physik. Chem. (Leipzig) B37, 307 (1937). (b)B. H. Mahan, J. Chem. Phys. 33, 959 (1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Microwave discharge lamp in slot of microwave cavty. Vacuum-ultraviolet monochromator to left of LiF window. Diffusion pump and gas storage bulb connections at upper right. Quartz getter tube joined to Pyrex discharge tube by graded seal, as shown by creased outline, left of center.

Fig. 2
Fig. 2

Emission spectra of Xe and water impurities. Solid curve: Xe resonance lines. Broken curve: impurity lines.

Fig. 3
Fig. 3

Emission spectra of Kr and water impurities. Solid curve: Kr resonance lines. Broken curve: impurity lines.

Fig. 4
Fig. 4

Pressure dependence of intensities of resonance lines.

Fig. 5
Fig. 5

Emission spectrum of mixture of 10% H2 in Ar. Total pressure about 1 mm Hg.

Fig. 6
Fig. 6

Emission spectrum of mixture of 20% N2 in Ar. Total pressure about 1 mm Hg.

Tables (1)

Tables Icon

Table I Intensity of various lamps excited by a microwave discharge.