Abstract

The number and relative power of simultaneously oscillating modes in 6328-Å He–Ne optical gas masers (lasers) were measured by means of a technique utilizing Fabry–Perot interferometers. In one case 28 dominant modes spanning a frequency range of 1080 Mc/sec out of the 1500 Mc/sec half-width of the 6328-Å Ne line were found. The relative amplitudes of the modes can be fitted generally to a Gaussian-shaped curve. The technique, which utilizes a scanning Fabry–Perot, is described and discussed.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Herriott, J. Opt. Soc. Am. 52, 1, 31 (1962).
    [Crossref]
  2. W. R. Bennett, Phys. Rev. 126, 580 (1962).
    [Crossref]
  3. W. W. Rigrod, H. Kogelnik, D. J. Brangaccio, and D. R. Herriott, J. Appl. Phys. 33, 743 (1962).
    [Crossref]
  4. H. Kogelnik and W. W. Rigrod, Proc. IRE 50, 2, 220 (1962).
  5. W. W. Rigrod, J. Appl. Phys. Letters 2, 3 (1963).
    [Crossref]
  6. A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961).
    [Crossref]
  7. G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489 (1961).
    [Crossref]
  8. G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347 (1962).
    [Crossref]
  9. A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 1, 96 (1962).
    [Crossref]
  10. A. Javan, T. S. Jaseja, and C. H. Townes, Bull. Am. Phys. Soc. Ser. II,  8, 4, Abstract V9 (1963).
  11. T. G. Polanyi and W. R. Watson, J. Appl. Phys. 34, 3, 553 (1963).
  12. W. R. Watson and T. G. Polanyi, J. Appl. Phys. 34, 3, 708 (1963).
    [Crossref]
  13. R. L. Fork, E. I. Gordon, D. R. Herriott, H. W. Kogelnik, and J. W. Loofbourrow, Bull. Am. Phys. Soc. Ser. II 8, 4, 380 (1963).
  14. As one increases the spectral range, (Δλ)SR, the resolution λ0/Δλ0 decreases since (Δλ)SR×(λ0/Δλ0)=λ0F, where F is the finesse of the Fabry–Perot interferometer.
  15. Bodine Electric Company, NSH-12R.
  16. G. K. Heller Company, Las Vegas, Nevada, 2Γ60.
  17. Boston Gear Works, Quincy, Massachusetts, LWG..
  18. We have not yet observed the reduction of power of a mode as it traverses the center frequency of the Doppler line; this reduction is expected as a consequence of the “hole burning” phenomenon.19,20
  19. R. A. McFarlane, W. R. Bennett, and W. E. Lamb, J. Appl. Phys. Letters 2, 10, 189 (1963).
    [Crossref]
  20. A. Szoke and A. Javan, Phys. Rev. Letters 10, 12, 521 (1963).
    [Crossref]
  21. M. Born and E. Wolfe in Principles of Optics (Pergamon Press, Inc., New York, 1959).
  22. A third plane mirror was added to the maser cavity spaced 30.3 cm from one of the other two plane mirrors.

1963 (7)

W. W. Rigrod, J. Appl. Phys. Letters 2, 3 (1963).
[Crossref]

A. Javan, T. S. Jaseja, and C. H. Townes, Bull. Am. Phys. Soc. Ser. II,  8, 4, Abstract V9 (1963).

T. G. Polanyi and W. R. Watson, J. Appl. Phys. 34, 3, 553 (1963).

W. R. Watson and T. G. Polanyi, J. Appl. Phys. 34, 3, 708 (1963).
[Crossref]

R. L. Fork, E. I. Gordon, D. R. Herriott, H. W. Kogelnik, and J. W. Loofbourrow, Bull. Am. Phys. Soc. Ser. II 8, 4, 380 (1963).

R. A. McFarlane, W. R. Bennett, and W. E. Lamb, J. Appl. Phys. Letters 2, 10, 189 (1963).
[Crossref]

A. Szoke and A. Javan, Phys. Rev. Letters 10, 12, 521 (1963).
[Crossref]

1962 (6)

G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347 (1962).
[Crossref]

A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 1, 96 (1962).
[Crossref]

D. R. Herriott, J. Opt. Soc. Am. 52, 1, 31 (1962).
[Crossref]

W. R. Bennett, Phys. Rev. 126, 580 (1962).
[Crossref]

W. W. Rigrod, H. Kogelnik, D. J. Brangaccio, and D. R. Herriott, J. Appl. Phys. 33, 743 (1962).
[Crossref]

H. Kogelnik and W. W. Rigrod, Proc. IRE 50, 2, 220 (1962).

1961 (2)

A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961).
[Crossref]

G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489 (1961).
[Crossref]

Ballik, E. A.

Bennett, W. R.

R. A. McFarlane, W. R. Bennett, and W. E. Lamb, J. Appl. Phys. Letters 2, 10, 189 (1963).
[Crossref]

W. R. Bennett, Phys. Rev. 126, 580 (1962).
[Crossref]

Bond, W. L.

Born, M.

M. Born and E. Wolfe in Principles of Optics (Pergamon Press, Inc., New York, 1959).

Boyd, G. D.

G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347 (1962).
[Crossref]

G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489 (1961).
[Crossref]

Brangaccio, D. J.

W. W. Rigrod, H. Kogelnik, D. J. Brangaccio, and D. R. Herriott, J. Appl. Phys. 33, 743 (1962).
[Crossref]

Fork, R. L.

R. L. Fork, E. I. Gordon, D. R. Herriott, H. W. Kogelnik, and J. W. Loofbourrow, Bull. Am. Phys. Soc. Ser. II 8, 4, 380 (1963).

Fox, A. G.

A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961).
[Crossref]

Gordon, E. I.

R. L. Fork, E. I. Gordon, D. R. Herriott, H. W. Kogelnik, and J. W. Loofbourrow, Bull. Am. Phys. Soc. Ser. II 8, 4, 380 (1963).

Gordon, J. P.

G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489 (1961).
[Crossref]

Herriott, D. R.

R. L. Fork, E. I. Gordon, D. R. Herriott, H. W. Kogelnik, and J. W. Loofbourrow, Bull. Am. Phys. Soc. Ser. II 8, 4, 380 (1963).

D. R. Herriott, J. Opt. Soc. Am. 52, 1, 31 (1962).
[Crossref]

W. W. Rigrod, H. Kogelnik, D. J. Brangaccio, and D. R. Herriott, J. Appl. Phys. 33, 743 (1962).
[Crossref]

Jaseja, T. S.

A. Javan, T. S. Jaseja, and C. H. Townes, Bull. Am. Phys. Soc. Ser. II,  8, 4, Abstract V9 (1963).

Javan, A.

A. Szoke and A. Javan, Phys. Rev. Letters 10, 12, 521 (1963).
[Crossref]

A. Javan, T. S. Jaseja, and C. H. Townes, Bull. Am. Phys. Soc. Ser. II,  8, 4, Abstract V9 (1963).

A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 1, 96 (1962).
[Crossref]

Kogelnik, H.

G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347 (1962).
[Crossref]

H. Kogelnik and W. W. Rigrod, Proc. IRE 50, 2, 220 (1962).

W. W. Rigrod, H. Kogelnik, D. J. Brangaccio, and D. R. Herriott, J. Appl. Phys. 33, 743 (1962).
[Crossref]

Kogelnik, H. W.

R. L. Fork, E. I. Gordon, D. R. Herriott, H. W. Kogelnik, and J. W. Loofbourrow, Bull. Am. Phys. Soc. Ser. II 8, 4, 380 (1963).

Lamb, W. E.

R. A. McFarlane, W. R. Bennett, and W. E. Lamb, J. Appl. Phys. Letters 2, 10, 189 (1963).
[Crossref]

Li, T.

A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961).
[Crossref]

Loofbourrow, J. W.

R. L. Fork, E. I. Gordon, D. R. Herriott, H. W. Kogelnik, and J. W. Loofbourrow, Bull. Am. Phys. Soc. Ser. II 8, 4, 380 (1963).

McFarlane, R. A.

R. A. McFarlane, W. R. Bennett, and W. E. Lamb, J. Appl. Phys. Letters 2, 10, 189 (1963).
[Crossref]

Polanyi, T. G.

W. R. Watson and T. G. Polanyi, J. Appl. Phys. 34, 3, 708 (1963).
[Crossref]

T. G. Polanyi and W. R. Watson, J. Appl. Phys. 34, 3, 553 (1963).

Rigrod, W. W.

W. W. Rigrod, J. Appl. Phys. Letters 2, 3 (1963).
[Crossref]

W. W. Rigrod, H. Kogelnik, D. J. Brangaccio, and D. R. Herriott, J. Appl. Phys. 33, 743 (1962).
[Crossref]

H. Kogelnik and W. W. Rigrod, Proc. IRE 50, 2, 220 (1962).

Szoke, A.

A. Szoke and A. Javan, Phys. Rev. Letters 10, 12, 521 (1963).
[Crossref]

Townes, C. H.

A. Javan, T. S. Jaseja, and C. H. Townes, Bull. Am. Phys. Soc. Ser. II,  8, 4, Abstract V9 (1963).

Watson, W. R.

T. G. Polanyi and W. R. Watson, J. Appl. Phys. 34, 3, 553 (1963).

W. R. Watson and T. G. Polanyi, J. Appl. Phys. 34, 3, 708 (1963).
[Crossref]

Wolfe, E.

M. Born and E. Wolfe in Principles of Optics (Pergamon Press, Inc., New York, 1959).

Bell System Tech. J. (3)

A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961).
[Crossref]

G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489 (1961).
[Crossref]

G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347 (1962).
[Crossref]

Bull. Am. Phys. Soc. Ser. II (2)

R. L. Fork, E. I. Gordon, D. R. Herriott, H. W. Kogelnik, and J. W. Loofbourrow, Bull. Am. Phys. Soc. Ser. II 8, 4, 380 (1963).

A. Javan, T. S. Jaseja, and C. H. Townes, Bull. Am. Phys. Soc. Ser. II,  8, 4, Abstract V9 (1963).

J. Appl. Phys. (3)

T. G. Polanyi and W. R. Watson, J. Appl. Phys. 34, 3, 553 (1963).

W. R. Watson and T. G. Polanyi, J. Appl. Phys. 34, 3, 708 (1963).
[Crossref]

W. W. Rigrod, H. Kogelnik, D. J. Brangaccio, and D. R. Herriott, J. Appl. Phys. 33, 743 (1962).
[Crossref]

J. Appl. Phys. Letters (2)

R. A. McFarlane, W. R. Bennett, and W. E. Lamb, J. Appl. Phys. Letters 2, 10, 189 (1963).
[Crossref]

W. W. Rigrod, J. Appl. Phys. Letters 2, 3 (1963).
[Crossref]

J. Opt. Soc. Am. (2)

Phys. Rev. (1)

W. R. Bennett, Phys. Rev. 126, 580 (1962).
[Crossref]

Phys. Rev. Letters (1)

A. Szoke and A. Javan, Phys. Rev. Letters 10, 12, 521 (1963).
[Crossref]

Proc. IRE (1)

H. Kogelnik and W. W. Rigrod, Proc. IRE 50, 2, 220 (1962).

Other (7)

M. Born and E. Wolfe in Principles of Optics (Pergamon Press, Inc., New York, 1959).

A third plane mirror was added to the maser cavity spaced 30.3 cm from one of the other two plane mirrors.

As one increases the spectral range, (Δλ)SR, the resolution λ0/Δλ0 decreases since (Δλ)SR×(λ0/Δλ0)=λ0F, where F is the finesse of the Fabry–Perot interferometer.

Bodine Electric Company, NSH-12R.

G. K. Heller Company, Las Vegas, Nevada, 2Γ60.

Boston Gear Works, Quincy, Massachusetts, LWG..

We have not yet observed the reduction of power of a mode as it traverses the center frequency of the Doppler line; this reduction is expected as a consequence of the “hole burning” phenomenon.19,20

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Axial modes of parallel mirror cavity laser relative to Doppler-broadened 6328-Å line of Ne. The full width at half intensity of a Doppler-broadened line is Δ ν D = 2 ( 2 R ln 2 ) 1 2 ν 0 ( T / M ) 1 2 / c; with T=400°K, M=20, ν0=4.74×1014 cps (λ0=6328 Å), one obtains ΔνD=1.53×109 cps or ΔλD=0.02 Å. For a laser with parallel mirrors spaced 60 cm, the axial mode separation c/2L=250 Mc/sec; if spherical mirrors are used, the spacing between axial modes and lowest order off-axis modes is c/4L.

Fig. 2
Fig. 2

Schematic of experimental apparatus: (1) He–Ne discharge tube; (2) (2′) mirrors forming optical cavity of laser; (3) (3′) plane mirrors; (4) rotating diffusor which can be interposed in path of light beam; (5) telescope in reverse; (6) (6′) plane mirrors of F–P interferometer. Spacing between mirrors is controlled by a motor-driven micrometer screw; (7) 25-cm focal length objective. Interference rings are localized in focal plane of this lens; (8) pinhole, (9) photomultiplier, (10) recording instrument.

Fig. 3
Fig. 3

Laser structure. The cavity is external to the discharge tube and is formed by two plane mirrors spaced ~100 cm. The discharge tube employs windows at the Brewster angle. This mechanical structure was also used as F–P interferometer. Detail of mechanism for axial drive of interferometer mirror is shown.

Fig. 4
Fig. 4

Fabry–Perot rings obtained with a 100-cm mirror spacing interferometer. The radiation was produced by a laser operating in a plane cavity with mirror spacing of 100 cm.

Fig. 5
Fig. 5

Fabry–Perot ring obtained with 16.5-cm mirror spacing interferometer. The radiation was produced as in Fig. 4.

Fig. 6
Fig. 6

Strip-chart record of photomultiplier output showing six modes repeated in three orders. Laser: plane parallel mirrors spaced 97.6 cm; F–P: 13 cm spacing, spectral range 1154 Mc/sec. Mode spacing is given by: ΔfMc/sec=(15 000/h) · (xb1xa1)/(xa2xa1)=154 Mc/sec. The distances, xb1xa1 and xa2xa1, are 0.23 in. and 1.72 in., respectively, as indicated in the figure.

Fig. 7
Fig. 7

The relative power outputs of five axial modes are fitted to the curve (pi/P0+PL/P0)exp[−k2(νiν0)]2, with k = 2 / Δ ν D ( ln 2 ) 1 2. Laser mirror spacing 60.3 cm; discharge tube 3 mm i.d.; the center f0 of the transition is at 474×106 Mc/sec (6328 Å) and the mode spacing is 250 Mc/sec.

Fig. 8
Fig. 8

Even and odd symmetric modes in a spherical optics laser. Mirror separation 190 cm, F–P length 13.6 cm; mode spacing 39.5 Mc/sec.

Fig. 9
Fig. 9

Rings obtained with the double F–P interferometer. Laser: plane parallel mirrors spaced 97.6 cm, third mirror added at 32.5 cm. Heavy ring closest to center is first of seven modes repeated in three orders. Second and fifth mode are missing owing to addition of third mirror. Note that suppression of every second order of the longer F–P is only partial and that strongest modes appear faintly in the broader dark band.

Tables (2)

Tables Icon

Table I Data and computation on mode separation of a plane mirror laser of 61.1 cm spacing.

Tables Icon

Table II Range of frequencies and number of modes simultaneously oscillating in several different lasers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ f = 15 000 h x b 1 - x a 1 x a 2 - x a 1 ,
p i = P 0 e - k 2 ( ν i - ν 0 ) 2 - P L i , k = ( 2 / Δ ν D ) ( ln 2 ) 1 2 ,