Abstract

Radiation chopping techniques have been employed to study infrared fluorescence of pure carbon monoxide in the region of its fundamental. The present study has served to confirm earlier results obtained by R. C. Millikan using quite different techniques. In addition, CO fluorescence emission V=1 → 0 was observed from samples irradiated in such a manner as to produce only V=0 → 2 initial absorption. The results can be interpreted in terms of resonant collisions, with the selection rule ΔV=±1, as follows:

CO(V=2)+CO(V=0)CO(V=1)+CO(V=1),

with fluorescence emission from the molecules in the V=1 state.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Hooker and R. C. Millikan, J. Chem. Phys. 38, 214 (1963).
    [Crossref]
  2. R. C. Millikan, Phys. Rev. Letters 8, 253 (1962); ibid.38, 2855 (1963).
    [Crossref]
  3. R. Ladenberg, Z. Physik 4, 451 (1921); S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1959), p. 21.
    [Crossref]
  4. W. S. Benedict, R. C. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
    [Crossref]
  5. C. Zener, Phys. Rev. 37, 556 (1931).
    [Crossref]
  6. H. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936).
  7. E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1957).
    [Crossref]
  8. R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).
    [Crossref]
  9. F. LeGay and M. LeGay, paper presented at Astrophysical Colloquium, Liège, 1963.
  10. Although the blackbody curves furnish a convenient set of references, they do not give measures of the temperatures of the emitting gases. The CO samples in the cell were optically thin, and their emission spectra consisted of individual lines as contrasted with the continuous spectrum of a blackbody. The actual temperatures of the gas samples are considerably higher than those of blackbodies giving equal chart deflections.
  11. Under conditions of intense irradiation, higher vibrational states could become populated by absorption. However, successive resonant collisions with molecules in the ground state would eventually populate the V=1 state from which fluorescence would occur.
  12. D. E. Burch and D. Williams, Appl. Opt. 1, 587 (1962).
    [Crossref]
  13. S. S. Penner and D. Weber, J. Chem. Phys. 19, 807 (1951).
    [Crossref]

1963 (1)

W. J. Hooker and R. C. Millikan, J. Chem. Phys. 38, 214 (1963).
[Crossref]

1962 (3)

R. C. Millikan, Phys. Rev. Letters 8, 253 (1962); ibid.38, 2855 (1963).
[Crossref]

W. S. Benedict, R. C. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

D. E. Burch and D. Williams, Appl. Opt. 1, 587 (1962).
[Crossref]

1957 (1)

E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1957).
[Crossref]

1952 (1)

R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).
[Crossref]

1951 (1)

S. S. Penner and D. Weber, J. Chem. Phys. 19, 807 (1951).
[Crossref]

1936 (1)

H. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936).

1931 (1)

C. Zener, Phys. Rev. 37, 556 (1931).
[Crossref]

1921 (1)

R. Ladenberg, Z. Physik 4, 451 (1921); S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1959), p. 21.
[Crossref]

Benedict, W. S.

W. S. Benedict, R. C. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

Burch, D. E.

Herman, R. C.

W. S. Benedict, R. C. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

Herzfeld, K. F.

R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).
[Crossref]

Hooker, W. J.

W. J. Hooker and R. C. Millikan, J. Chem. Phys. 38, 214 (1963).
[Crossref]

Ladenberg, R.

R. Ladenberg, Z. Physik 4, 451 (1921); S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1959), p. 21.
[Crossref]

Landau, H.

H. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936).

LeGay, F.

F. LeGay and M. LeGay, paper presented at Astrophysical Colloquium, Liège, 1963.

LeGay, M.

F. LeGay and M. LeGay, paper presented at Astrophysical Colloquium, Liège, 1963.

Millikan, R. C.

W. J. Hooker and R. C. Millikan, J. Chem. Phys. 38, 214 (1963).
[Crossref]

R. C. Millikan, Phys. Rev. Letters 8, 253 (1962); ibid.38, 2855 (1963).
[Crossref]

Montroll, E. W.

E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1957).
[Crossref]

Moore, G. E.

W. S. Benedict, R. C. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

Penner, S. S.

S. S. Penner and D. Weber, J. Chem. Phys. 19, 807 (1951).
[Crossref]

Schwartz, R. N.

R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).
[Crossref]

Shuler, K. E.

E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1957).
[Crossref]

Silverman, S.

W. S. Benedict, R. C. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

Slawsky, Z. I.

R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).
[Crossref]

Teller, E.

H. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936).

Weber, D.

S. S. Penner and D. Weber, J. Chem. Phys. 19, 807 (1951).
[Crossref]

Williams, D.

Zener, C.

C. Zener, Phys. Rev. 37, 556 (1931).
[Crossref]

Appl. Opt. (1)

Astrophys. J. (1)

W. S. Benedict, R. C. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

J. Chem. Phys. (4)

W. J. Hooker and R. C. Millikan, J. Chem. Phys. 38, 214 (1963).
[Crossref]

E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1957).
[Crossref]

R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).
[Crossref]

S. S. Penner and D. Weber, J. Chem. Phys. 19, 807 (1951).
[Crossref]

Phys. Rev. (1)

C. Zener, Phys. Rev. 37, 556 (1931).
[Crossref]

Phys. Rev. Letters (1)

R. C. Millikan, Phys. Rev. Letters 8, 253 (1962); ibid.38, 2855 (1963).
[Crossref]

Physik. Z. Sowjetunion (1)

H. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936).

Z. Physik (1)

R. Ladenberg, Z. Physik 4, 451 (1921); S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1959), p. 21.
[Crossref]

Other (3)

F. LeGay and M. LeGay, paper presented at Astrophysical Colloquium, Liège, 1963.

Although the blackbody curves furnish a convenient set of references, they do not give measures of the temperatures of the emitting gases. The CO samples in the cell were optically thin, and their emission spectra consisted of individual lines as contrasted with the continuous spectrum of a blackbody. The actual temperatures of the gas samples are considerably higher than those of blackbodies giving equal chart deflections.

Under conditions of intense irradiation, higher vibrational states could become populated by absorption. However, successive resonant collisions with molecules in the ground state would eventually populate the V=1 state from which fluorescence would occur.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of optical arrangement.

Fig. 2
Fig. 2

(Top) Schematic drawing of cylindrical radiation chopper and sample cell. The sample cell consists of a 6-cm section of 4.8-cm o.d. glass tubing with rocksalt windows at the ends and the sides as shown. (Bottom) Chopping cycle showing schematically irradiation and observed fluorescence as a function of time in milliseconds.

Fig. 3
Fig. 3

A record of the fluorescence spectrum of purified CO along with records of thermal emission spectra of N2O, unpurified CO, and blackbodies at various temperatures.

Fig. 4
Fig. 4

Fluorescence of CO for various sample pressures.

Fig. 5
Fig. 5

Fluorescence spectrum of CO observed with a LiF prism spectrometer and various slitwidths.

Fig. 6
Fig. 6

Comparison of CO fluorescence at 4.6 μ with and without a glass filter in the incident beam.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

CO ( V = 2 ) + CO ( V = 0 ) CO ( V = 1 ) + CO ( V = 1 ) ,
CO * CO + h ν ,
CO * + M CO + M + KE ,
CO * ( V = 2 ) + CO CO * ( V = 1 ) + CO * ( V = 1 ) ,
Δ ν P R = ( 8 B k T / h c ) 1 2 = 2.358 ( B T ) 1 2 cm - 1 ,