Abstract

The linear electro-optic coefficients of KH2PO4 and a number of its isomorphs have been measured at room temperature using dc voltages. The results at 546 nm are as follows: r63 = 10.3±0.1×10−12 m/V for KH2PO4, 10.9±0.1×10−12 m/V for KH2AsO4, and 13.0±0.2×10−12 m/V for RbH2AsO4; r41 = 8.77±0.14×10−12 m/V for KH2PO4, 24.5±0.4×10−12m/V for NH4H2PO4, 12.5±0.4×10−12 m/V for KH2AsO4, and 8.8±0.4×10−12 m/V for KD2PO4 which was about 90% deuterated. A transverse modulator based on a single 45° Y-cut crystal of NH4H2PO4 is proposed which requires only 45 V rms for 50% amplitude modulation of 632.8 nm light.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Sliker and S. R. Burlage, J. Appl. Phys. 34, 1837 (1963).
    [Crossref]
  2. Hans Jaffe, U. S. Patent No. 2,591,701;R. O’B. Carpenter, J. Opt. Soc. Am. 40, 225 (1950).
    [Crossref]
  3. American Institute of Physics Handbook, edited by D. E. Gray (McGraw-Hill Book Company, Inc., New York, 1963), 2nd ed., pp. 6–188.
  4. I. P. Kaminow, Phys. Rev. Letters 6, 528 (1961).
    [Crossref]
  5. P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
    [Crossref]
  6. F. J. McClung and R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
    [Crossref]
  7. F. R. Marshall and D. L. Roberts, Proc. IRE 50, 2108 (1962).
  8. O. G. Vlokh and I. S. Zheludev, Kristallografiya 5, 390 (1960)[English transl.: Soviet Phys.—Cryst. 5, 368 (1960)].
  9. A. N. Winchell, Microscopic Characters of Artificial Minerals (John Wiley & Sons, Inc., New York, 1931).
  10. B. Zwicker and P. Scherrer, Helv. Phys. Acta 17, 346 (1944).
  11. D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics, edited by W. P. Mason (Academic Press Inc., New York, 1964), Vol. I, Part A, p. 181.
  12. The 45° Y amplitude modulator may be converted to a frequency or phase modulator if the second polarizer is removed and the Y axis of the crystal is set perpendicular to the axis of the first linear polarizer.
  13. Model 112, Spectra-Physics, Mountain View, California.
  14. J. L. Wentz, Proc. IEEE 52, 716 (1964).
    [Crossref]
  15. A. Yariv, Proc. IEEE 52, 719 (1964).
    [Crossref]

1964 (2)

J. L. Wentz, Proc. IEEE 52, 716 (1964).
[Crossref]

A. Yariv, Proc. IEEE 52, 719 (1964).
[Crossref]

1963 (3)

T. R. Sliker and S. R. Burlage, J. Appl. Phys. 34, 1837 (1963).
[Crossref]

P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
[Crossref]

F. J. McClung and R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
[Crossref]

1962 (1)

F. R. Marshall and D. L. Roberts, Proc. IRE 50, 2108 (1962).

1961 (1)

I. P. Kaminow, Phys. Rev. Letters 6, 528 (1961).
[Crossref]

1960 (1)

O. G. Vlokh and I. S. Zheludev, Kristallografiya 5, 390 (1960)[English transl.: Soviet Phys.—Cryst. 5, 368 (1960)].

1944 (1)

B. Zwicker and P. Scherrer, Helv. Phys. Acta 17, 346 (1944).

Berlincourt, D. A.

D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics, edited by W. P. Mason (Academic Press Inc., New York, 1964), Vol. I, Part A, p. 181.

Burlage, S. R.

T. R. Sliker and S. R. Burlage, J. Appl. Phys. 34, 1837 (1963).
[Crossref]

Curran, D. R.

D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics, edited by W. P. Mason (Academic Press Inc., New York, 1964), Vol. I, Part A, p. 181.

Franken, P. A.

P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
[Crossref]

Hellwarth, R. W.

F. J. McClung and R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
[Crossref]

Jaffe, H.

D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics, edited by W. P. Mason (Academic Press Inc., New York, 1964), Vol. I, Part A, p. 181.

Jaffe, Hans

Hans Jaffe, U. S. Patent No. 2,591,701;R. O’B. Carpenter, J. Opt. Soc. Am. 40, 225 (1950).
[Crossref]

Kaminow, I. P.

I. P. Kaminow, Phys. Rev. Letters 6, 528 (1961).
[Crossref]

Marshall, F. R.

F. R. Marshall and D. L. Roberts, Proc. IRE 50, 2108 (1962).

McClung, F. J.

F. J. McClung and R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
[Crossref]

Roberts, D. L.

F. R. Marshall and D. L. Roberts, Proc. IRE 50, 2108 (1962).

Scherrer, P.

B. Zwicker and P. Scherrer, Helv. Phys. Acta 17, 346 (1944).

Sliker, T. R.

T. R. Sliker and S. R. Burlage, J. Appl. Phys. 34, 1837 (1963).
[Crossref]

Vlokh, O. G.

O. G. Vlokh and I. S. Zheludev, Kristallografiya 5, 390 (1960)[English transl.: Soviet Phys.—Cryst. 5, 368 (1960)].

Ward, J. F.

P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
[Crossref]

Wentz, J. L.

J. L. Wentz, Proc. IEEE 52, 716 (1964).
[Crossref]

Winchell, A. N.

A. N. Winchell, Microscopic Characters of Artificial Minerals (John Wiley & Sons, Inc., New York, 1931).

Yariv, A.

A. Yariv, Proc. IEEE 52, 719 (1964).
[Crossref]

Zheludev, I. S.

O. G. Vlokh and I. S. Zheludev, Kristallografiya 5, 390 (1960)[English transl.: Soviet Phys.—Cryst. 5, 368 (1960)].

Zwicker, B.

B. Zwicker and P. Scherrer, Helv. Phys. Acta 17, 346 (1944).

Helv. Phys. Acta (1)

B. Zwicker and P. Scherrer, Helv. Phys. Acta 17, 346 (1944).

J. Appl. Phys. (1)

T. R. Sliker and S. R. Burlage, J. Appl. Phys. 34, 1837 (1963).
[Crossref]

Kristallografiya (1)

O. G. Vlokh and I. S. Zheludev, Kristallografiya 5, 390 (1960)[English transl.: Soviet Phys.—Cryst. 5, 368 (1960)].

Phys. Rev. Letters (1)

I. P. Kaminow, Phys. Rev. Letters 6, 528 (1961).
[Crossref]

Proc. IEEE (3)

F. J. McClung and R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
[Crossref]

J. L. Wentz, Proc. IEEE 52, 716 (1964).
[Crossref]

A. Yariv, Proc. IEEE 52, 719 (1964).
[Crossref]

Proc. IRE (1)

F. R. Marshall and D. L. Roberts, Proc. IRE 50, 2108 (1962).

Rev. Mod. Phys. (1)

P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
[Crossref]

Other (6)

Hans Jaffe, U. S. Patent No. 2,591,701;R. O’B. Carpenter, J. Opt. Soc. Am. 40, 225 (1950).
[Crossref]

American Institute of Physics Handbook, edited by D. E. Gray (McGraw-Hill Book Company, Inc., New York, 1963), 2nd ed., pp. 6–188.

A. N. Winchell, Microscopic Characters of Artificial Minerals (John Wiley & Sons, Inc., New York, 1931).

D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics, edited by W. P. Mason (Academic Press Inc., New York, 1964), Vol. I, Part A, p. 181.

The 45° Y amplitude modulator may be converted to a frequency or phase modulator if the second polarizer is removed and the Y axis of the crystal is set perpendicular to the axis of the first linear polarizer.

Model 112, Spectra-Physics, Mountain View, California.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

F. 1
F. 1

Transmission characteristics of the 45° Y transverse modulator.

Tables (2)

Tables Icon

Table I Half-wave retardation voltages as a function of wavelength for KH2PO4, KH2AsO4, and RbH2AsO4.

Tables Icon

Table II Electro-optic coefficient r41 for KH2PO4, NH4H2PO4, KH2AsO4, and 83%–92% deuterated KD2PO4 at 546 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

o 2 ( x 2 + y 2 ) + e 2 z 2 + 2 r 63 E z x y = 1 ,
Γ = 2 t r 41 E y λ ( e 2 + o 2 ) 3 2 ,
A = e y 2 sin 2 [ ( π / 20 ) ( n y + m + p ) ] d y ] / 2 0 e y 2 d y ,
n = 20 B t ( e 2 o 2 ) / λ ( e 2 + o 2 ) ,
m = 20 ( 2 ) 1 2 t r 41 E y / λ ( e 2 + o 2 ) 3 2 ,