Abstract

The optical constants of vacuum-evaporated silver films were determined in the wavelength region 2500–3700 Å from reflectance measurements made at various angles of incidence. These data were obtained to investigate the discrepancy between the experimental optical emission studies from electron-bombarded thin silver foils and transition radiation theory when the optical constants of bulk silver were used as input data. The discrepancy of about 30% in the photon intensity at the peak of emission is removed when the optical constants of evaporated films are used. These optical constants also predict accurately the resonance absorption found in the optical transmission of thin silver foils.

© 1964 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. T. Arakawa, N. O. Davis, L. C. Emerson, and R. D. Birkhoff, Phys. Rev. 135, A224 (1964).
    [Crossref]
  2. R. W. Brown, P. Wessel, and E. P. Trounson, Phys. Rev. Letters 5, 472 (1960);A. L. Frank, E. T. Arakawa, and R. D. Birkhoff, Phys. Rev. 126, 1947 (1962);and W. Steinman, Phys. Rev. Letters 5, 470 (1960).
    [Crossref]
  3. S. Yamaguchi, J. Phys. Soc. Japan 17, 1172 (1962);J. Phys. Soc. Japan 18, 266 (1962).
    [Crossref]
  4. A. J. McAllister and E. A. Stern, Phys. Rev. 132, 1599 (1963).
    [Crossref]
  5. K. Ishiguro and T. Sasaki, Sci. Papers Coll. Gen. Educ., Univ. Toyko, 12, 19 (1962);J. Appl. Phys. (Japan) 2, 289 (1963).
  6. P. H. Berning, G. Hass, and R. P. Madden, J. Opt. Soc. Am. 50, 586 (1960).
    [Crossref]
  7. Emission spectrographs analysis of the silver by the Spectro-Chemical Laboratory at ORNL showed traces of copper (<0.01%), iron (<0.01%), magnesium (<0.01%), and calcium (<0.001%).
  8. Distributed by Seebee Paint and Chemical Co., 4627 West 60th Street, Chicago 29, Illinois.
  9. H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).
    [Crossref]
  10. R. Minor, Ann. Physik 10, 581 (1903);see also L. G. Shulz, J. Opt. Soc. Am. 44, 357 (1954).
    [Crossref]
  11. R. H. Ritchie and H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
    [Crossref]
  12. R. A. Ferrell and E. A. Stern, Am. J. Phys. 31, 810 (1962).
    [Crossref]

1964 (1)

E. T. Arakawa, N. O. Davis, L. C. Emerson, and R. D. Birkhoff, Phys. Rev. 135, A224 (1964).
[Crossref]

1963 (1)

A. J. McAllister and E. A. Stern, Phys. Rev. 132, 1599 (1963).
[Crossref]

1962 (4)

H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).
[Crossref]

R. H. Ritchie and H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
[Crossref]

R. A. Ferrell and E. A. Stern, Am. J. Phys. 31, 810 (1962).
[Crossref]

S. Yamaguchi, J. Phys. Soc. Japan 17, 1172 (1962);J. Phys. Soc. Japan 18, 266 (1962).
[Crossref]

1960 (2)

P. H. Berning, G. Hass, and R. P. Madden, J. Opt. Soc. Am. 50, 586 (1960).
[Crossref]

R. W. Brown, P. Wessel, and E. P. Trounson, Phys. Rev. Letters 5, 472 (1960);A. L. Frank, E. T. Arakawa, and R. D. Birkhoff, Phys. Rev. 126, 1947 (1962);and W. Steinman, Phys. Rev. Letters 5, 470 (1960).
[Crossref]

1903 (1)

R. Minor, Ann. Physik 10, 581 (1903);see also L. G. Shulz, J. Opt. Soc. Am. 44, 357 (1954).
[Crossref]

Arakawa, E. T.

E. T. Arakawa, N. O. Davis, L. C. Emerson, and R. D. Birkhoff, Phys. Rev. 135, A224 (1964).
[Crossref]

Berning, P. H.

Birkhoff, R. D.

E. T. Arakawa, N. O. Davis, L. C. Emerson, and R. D. Birkhoff, Phys. Rev. 135, A224 (1964).
[Crossref]

Brown, R. W.

R. W. Brown, P. Wessel, and E. P. Trounson, Phys. Rev. Letters 5, 472 (1960);A. L. Frank, E. T. Arakawa, and R. D. Birkhoff, Phys. Rev. 126, 1947 (1962);and W. Steinman, Phys. Rev. Letters 5, 470 (1960).
[Crossref]

Davis, N. O.

E. T. Arakawa, N. O. Davis, L. C. Emerson, and R. D. Birkhoff, Phys. Rev. 135, A224 (1964).
[Crossref]

Ehrenreich, H.

H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).
[Crossref]

Eldridge, H. B.

R. H. Ritchie and H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
[Crossref]

Emerson, L. C.

E. T. Arakawa, N. O. Davis, L. C. Emerson, and R. D. Birkhoff, Phys. Rev. 135, A224 (1964).
[Crossref]

Ferrell, R. A.

R. A. Ferrell and E. A. Stern, Am. J. Phys. 31, 810 (1962).
[Crossref]

Hass, G.

Ishiguro, K.

K. Ishiguro and T. Sasaki, Sci. Papers Coll. Gen. Educ., Univ. Toyko, 12, 19 (1962);J. Appl. Phys. (Japan) 2, 289 (1963).

Madden, R. P.

McAllister, A. J.

A. J. McAllister and E. A. Stern, Phys. Rev. 132, 1599 (1963).
[Crossref]

Minor, R.

R. Minor, Ann. Physik 10, 581 (1903);see also L. G. Shulz, J. Opt. Soc. Am. 44, 357 (1954).
[Crossref]

Philipp, H. R.

H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).
[Crossref]

Ritchie, R. H.

R. H. Ritchie and H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
[Crossref]

Sasaki, T.

K. Ishiguro and T. Sasaki, Sci. Papers Coll. Gen. Educ., Univ. Toyko, 12, 19 (1962);J. Appl. Phys. (Japan) 2, 289 (1963).

Stern, E. A.

A. J. McAllister and E. A. Stern, Phys. Rev. 132, 1599 (1963).
[Crossref]

R. A. Ferrell and E. A. Stern, Am. J. Phys. 31, 810 (1962).
[Crossref]

Trounson, E. P.

R. W. Brown, P. Wessel, and E. P. Trounson, Phys. Rev. Letters 5, 472 (1960);A. L. Frank, E. T. Arakawa, and R. D. Birkhoff, Phys. Rev. 126, 1947 (1962);and W. Steinman, Phys. Rev. Letters 5, 470 (1960).
[Crossref]

Wessel, P.

R. W. Brown, P. Wessel, and E. P. Trounson, Phys. Rev. Letters 5, 472 (1960);A. L. Frank, E. T. Arakawa, and R. D. Birkhoff, Phys. Rev. 126, 1947 (1962);and W. Steinman, Phys. Rev. Letters 5, 470 (1960).
[Crossref]

Yamaguchi, S.

S. Yamaguchi, J. Phys. Soc. Japan 17, 1172 (1962);J. Phys. Soc. Japan 18, 266 (1962).
[Crossref]

Am. J. Phys. (1)

R. A. Ferrell and E. A. Stern, Am. J. Phys. 31, 810 (1962).
[Crossref]

Ann. Physik (1)

R. Minor, Ann. Physik 10, 581 (1903);see also L. G. Shulz, J. Opt. Soc. Am. 44, 357 (1954).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Soc. Japan (1)

S. Yamaguchi, J. Phys. Soc. Japan 17, 1172 (1962);J. Phys. Soc. Japan 18, 266 (1962).
[Crossref]

Phys. Rev. (4)

A. J. McAllister and E. A. Stern, Phys. Rev. 132, 1599 (1963).
[Crossref]

E. T. Arakawa, N. O. Davis, L. C. Emerson, and R. D. Birkhoff, Phys. Rev. 135, A224 (1964).
[Crossref]

R. H. Ritchie and H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
[Crossref]

H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).
[Crossref]

Phys. Rev. Letters (1)

R. W. Brown, P. Wessel, and E. P. Trounson, Phys. Rev. Letters 5, 472 (1960);A. L. Frank, E. T. Arakawa, and R. D. Birkhoff, Phys. Rev. 126, 1947 (1962);and W. Steinman, Phys. Rev. Letters 5, 470 (1960).
[Crossref]

Other (3)

K. Ishiguro and T. Sasaki, Sci. Papers Coll. Gen. Educ., Univ. Toyko, 12, 19 (1962);J. Appl. Phys. (Japan) 2, 289 (1963).

Emission spectrographs analysis of the silver by the Spectro-Chemical Laboratory at ORNL showed traces of copper (<0.01%), iron (<0.01%), magnesium (<0.01%), and calcium (<0.001%).

Distributed by Seebee Paint and Chemical Co., 4627 West 60th Street, Chicago 29, Illinois.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

F. 1
F. 1

Measured reflectance from several vacuum evaporated silver films for unpolarized light incident at 20° and 70°.

F. 2
F. 2

The real and imaginary parts of the complex index of refraction for bulk silver obtained by Ehrenreich and Philipp (dashed curves) and for vacuum evaporated silver obtained by ORNL (solid curves).

F. 3
F. 3

The real and imaginary parts of the complex dielectric constant and the energy loss function Im(1/) for vacuum evaporated silver.

F. 4
F. 4

Comparison of the experimentally observed photon emission (A) from an electron-bombarded silver foil (θ = 30°, E = 40 keV, t = 660 Å.) with transition radiation theory using n and k values of ORNL (B) and Ehrenreich and Philipp (C).

F. 5
F. 5

Spectral transmittance for parallel polarized light of silver film 415 Å in thickness for various angles of incidence. A, theory; B, experimental.

Tables (1)

Tables Icon

Table I Optical constants of vacuum evaporated silver films.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r s = | [ ( n + i k ) 2 sin 2 φ ] 1 2 cos φ [ ( n + i k ) 2 sin 2 φ ] 1 2 + cos φ | 2 , r p = | [ ( n + i k ) 2 sin 2 φ ] 1 2 ( n + i k ) 2 cos φ [ ( n + i k ) 2 sin 2 φ ] 1 2 + ( n + i k ) 2 cos φ | 2 ,