Abstract

Expressions are derived for the maximum precision with which an optical instrument can determine the direction of a light source and the orientation of a source about an axis parallel to the line of sight.

PDF Article

References

  • View by:
  • |
  • |

  1. Derived from ΔpΔq = h/4π, where Δp and Δq are the rms errors. See R. W. Ditchburn, Liglit (Interscience Publishers, Inc., New York, 1959), p. 612.
  2. The answers are, respectively, Δθσ=3½/2k (n)½ and Δθ, =k/n½.
  3. W. Gröbner and N. Hofreiter, Integraltalfel (Springer-Verlag, Vienna, 1961), 3rd ed., Vol. II, p. 202, Eq. (5).

Ditchburn, R. W.

Derived from ΔpΔq = h/4π, where Δp and Δq are the rms errors. See R. W. Ditchburn, Liglit (Interscience Publishers, Inc., New York, 1959), p. 612.

Gröbner, W.

W. Gröbner and N. Hofreiter, Integraltalfel (Springer-Verlag, Vienna, 1961), 3rd ed., Vol. II, p. 202, Eq. (5).

Hofreiter, N.

W. Gröbner and N. Hofreiter, Integraltalfel (Springer-Verlag, Vienna, 1961), 3rd ed., Vol. II, p. 202, Eq. (5).

Other

Derived from ΔpΔq = h/4π, where Δp and Δq are the rms errors. See R. W. Ditchburn, Liglit (Interscience Publishers, Inc., New York, 1959), p. 612.

The answers are, respectively, Δθσ=3½/2k (n)½ and Δθ, =k/n½.

W. Gröbner and N. Hofreiter, Integraltalfel (Springer-Verlag, Vienna, 1961), 3rd ed., Vol. II, p. 202, Eq. (5).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.