Abstract

The infrared spectral absorptance of HCl was measured experimentally at temperatures ranging from room temperature to 1200°K. The measured spectral absorptance was compared to that calculated from band model theories and from a simple isolated line model. Agreement between calculation and theory was good. The band model calculation fit the data best at high temperature; at low temperature, where the band model theory was less successful, the isolated line theory gave an excellent fit.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. N. Plass, J. Opt. Soc. Am. 49, 821 (1959).
    [CrossRef]
  2. V. R. Stull and G. N. Plass, J. Opt. Soc. Am. 50, 1279 (1960).
    [CrossRef]
  3. M. Steinberg and W. O. Davies, J. Chem. Phys. 34, 1373 (1961).
    [CrossRef]
  4. R. H. Tourin and H. J. Babrov, J. Chem. Phys. 37, 581 (1962).
    [CrossRef]
  5. R. H. Tourin, J. Opt. Soc. Am. 51, 175 (1961).
    [CrossRef]
  6. R. H. Tourin, J. Opt. Soc. Am. 51, 1225 (1961).
    [CrossRef]
  7. W. Malkmus, J. Opt. Soc. Am. (to be published).
  8. U. P. Oppenheim and Y. Ben-Aryeh, J. Opt. Soc. Am. 53, 344 (1963).
    [CrossRef]
  9. R. H. Tourin, J. Opt. Soc. Am. 51, 799 (1961).
    [CrossRef]
  10. H. J. Babrov and R. H. Tourin, J. Quant. Spectry. Radiative Transfer 3 (March1963).
    [CrossRef]
  11. W. M. Elsasser, Harvard Meteorological Studies No. 6, p. 28 (1942).
  12. R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952).
    [CrossRef]
  13. V. R. Stull (private communication, 1962).
  14. G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Inc., New York, 1950), pp. 124–126.
  15. W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 850 (1956).
    [CrossRef]
  16. F. Reiche, J. Opt. Soc. Am. 46, 590 (1956).
    [CrossRef]
  17. H. Sakei (private communication, 1962).
  18. L. Kaplan and D. Eggers, J. Chem. Phys. 25, 876 (1956).
    [CrossRef]

1963 (2)

U. P. Oppenheim and Y. Ben-Aryeh, J. Opt. Soc. Am. 53, 344 (1963).
[CrossRef]

H. J. Babrov and R. H. Tourin, J. Quant. Spectry. Radiative Transfer 3 (March1963).
[CrossRef]

1962 (1)

R. H. Tourin and H. J. Babrov, J. Chem. Phys. 37, 581 (1962).
[CrossRef]

1961 (4)

1960 (1)

1959 (1)

1956 (3)

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 850 (1956).
[CrossRef]

F. Reiche, J. Opt. Soc. Am. 46, 590 (1956).
[CrossRef]

L. Kaplan and D. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

1952 (1)

R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952).
[CrossRef]

Babrov, H. J.

H. J. Babrov and R. H. Tourin, J. Quant. Spectry. Radiative Transfer 3 (March1963).
[CrossRef]

R. H. Tourin and H. J. Babrov, J. Chem. Phys. 37, 581 (1962).
[CrossRef]

Ben-Aryeh, Y.

Benedict, W. S.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 850 (1956).
[CrossRef]

Davies, W. O.

M. Steinberg and W. O. Davies, J. Chem. Phys. 34, 1373 (1961).
[CrossRef]

Eggers, D.

L. Kaplan and D. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

Elsasser, W. M.

W. M. Elsasser, Harvard Meteorological Studies No. 6, p. 28 (1942).

Goody, R. M.

R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952).
[CrossRef]

Herman, R.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 850 (1956).
[CrossRef]

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Inc., New York, 1950), pp. 124–126.

Kaplan, L.

L. Kaplan and D. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

Malkmus, W.

W. Malkmus, J. Opt. Soc. Am. (to be published).

Moore, G. E.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 850 (1956).
[CrossRef]

Oppenheim, U. P.

Plass, G. N.

Reiche, F.

Sakei, H.

H. Sakei (private communication, 1962).

Silverman, S.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 850 (1956).
[CrossRef]

Steinberg, M.

M. Steinberg and W. O. Davies, J. Chem. Phys. 34, 1373 (1961).
[CrossRef]

Stull, V. R.

Tourin, R. H.

H. J. Babrov and R. H. Tourin, J. Quant. Spectry. Radiative Transfer 3 (March1963).
[CrossRef]

R. H. Tourin and H. J. Babrov, J. Chem. Phys. 37, 581 (1962).
[CrossRef]

R. H. Tourin, J. Opt. Soc. Am. 51, 799 (1961).
[CrossRef]

R. H. Tourin, J. Opt. Soc. Am. 51, 1225 (1961).
[CrossRef]

R. H. Tourin, J. Opt. Soc. Am. 51, 175 (1961).
[CrossRef]

Can. J. Phys. (1)

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 850 (1956).
[CrossRef]

J. Chem. Phys. (3)

L. Kaplan and D. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

M. Steinberg and W. O. Davies, J. Chem. Phys. 34, 1373 (1961).
[CrossRef]

R. H. Tourin and H. J. Babrov, J. Chem. Phys. 37, 581 (1962).
[CrossRef]

J. Opt. Soc. Am. (7)

J. Quant. Spectry. Radiative Transfer (1)

H. J. Babrov and R. H. Tourin, J. Quant. Spectry. Radiative Transfer 3 (March1963).
[CrossRef]

Quart. J. Roy. Meteorol. Soc. (1)

R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952).
[CrossRef]

Other (5)

V. R. Stull (private communication, 1962).

G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Inc., New York, 1950), pp. 124–126.

H. Sakei (private communication, 1962).

W. M. Elsasser, Harvard Meteorological Studies No. 6, p. 28 (1942).

W. Malkmus, J. Opt. Soc. Am. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic drawing of optical system for the sample cell.

Fig. 2
Fig. 2

Experimental spectral absorptance of the P branch of HCl at 580°K and P2l = 10 atm2cm. Curve A is from data with a spectral slitwidth of 11 cm−1. Curve B is from data with a spectral slitwidth of 65 cm−1.

Fig. 3
Fig. 3

Experimental spectral absorptance of the R branch of HCl at 580°K and P2l = 10 atm2cm. Curve A is from data with a spectral slitwidth of 11 cm−1. Curve B is from data with a spectral slitwidth of 65 cm−1.

Fig. 4
Fig. 4

Experimental spectral absorptance of the P branch of HCl at 1200°K and P2l = 10 atm2cm. Curve A is from data with a spectral slitwidth of 11 cm−1. Curve B is from data with a spectral slitwidth of 65 cm−1.

Fig. 5
Fig. 5

Experimental spectral absorptance of the R branch of HCl at 1200°K and P2l = 10 atm2cm. Curve A is from data with a spectral slitwidth of 11 cm−1. Curve B is from data with a spectral slitwidth of 65 cm−1.

Fig. 6
Fig. 6

Experimental and predicted spectral absorptance of HCl. Experimental curve for 580°K, slitwidth 65 cm−1. Predicted curve for 600°K. P2l = 10 atm2cm for both curves.

Fig. 7
Fig. 7

Experimental and predicted spectral absorptance of HCl. Curve A is predicted curve for 600°K. Curves B and C are experimental curves for 530°K and 630°K, respectively. P2l = 10 atm2cm for all curves.

Fig. 8
Fig. 8

Experimental and predicted spectral absorptance of HCl at 1200°K and P2l = 10 atm2cm.

Fig. 9
Fig. 9

Experimental spectral absorptance of HCl at 1150°, 1200°, and 1250°K. P2l = 10 atm2cm for all cases.

Fig. 10
Fig. 10

Spectral absorptance of HCl at room temperature, showing experimental points, band model calculation of Stull and Plass, and isolated line calculation. P2l = 1 atm2cm.

Tables (1)

Tables Icon

Table I Sample calculations of spectral emissivity by the isolated single line method.