Abstract

A study of the energy levels of isoelectronic sequences has led to a simple empirical relation to describe these levels. This relation is based on the idea that one can always linearize the ratio E/Zs for some value of s which is nonintegral. Application of this relation to various sequences leads to energy levels which deviate by less than 1% from the experimental values. As a result of the application of this method to the ground term of various sequences, certain coronal lines can be identified as forbidden transitions in highly ionized species. Edlén’s identification of the coronal line at 4086.3 Å as the forbidden 3P13P2 transitions of Ca xiii is confirmed. The coronal line at 3454.3 Å can be identified as the forbidden transition 2P3/22P1/2 of Cu xiii.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See for example: E. U. Condon and J. C. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1935); J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill Book Company, Inc., New York, 1960).
  2. B. Edlén, Z. Astrophys. 22, 59 (1942); P. Kessler, Compt. Rend. 242, 350 (1956); Compt. Rend. 242, 742 (1956).
  3. D. Layzer, Ann. Phys. 8, 271 (1959); D. Layzer and J. Bahcall, ibid.  17, 117 (1961).
    [Crossref]
  4. H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Company, Inc., New York, 1934); P. G. Kruger and W. E. Shoup, Phys. Rev. 46, 124 (1934); R. F. Bacher and S. A. Goudsmit, ibid.  46, 948 (1934); C. G. Bedreag, Rev. Phys. Acad. Rep. Populaire Roumaine 2, 183 (1957); J. C. Slater, see Ref. 1—an extensive bibiography is given in Vol. II, pp. 383 to 431.
    [Crossref]
  5. H. E. White (see Ref. 4).
  6. All experimental values of energy levels are taken from C. E. Moore, “Atomic Energy Levels,” Vols. I, II, and III; Circ. 467, National Bureau of Standards, Washington, D. C.
  7. B. Edlén, Monthly Notices Roy. Astron. Soc. 114, 700 (1954).
  8. D. Layzer, Monthly Notices Roy. Astron. Soc. 114, 692 (1954).

1959 (1)

D. Layzer, Ann. Phys. 8, 271 (1959); D. Layzer and J. Bahcall, ibid.  17, 117 (1961).
[Crossref]

1954 (2)

B. Edlén, Monthly Notices Roy. Astron. Soc. 114, 700 (1954).

D. Layzer, Monthly Notices Roy. Astron. Soc. 114, 692 (1954).

1942 (1)

B. Edlén, Z. Astrophys. 22, 59 (1942); P. Kessler, Compt. Rend. 242, 350 (1956); Compt. Rend. 242, 742 (1956).

Condon, E. U.

See for example: E. U. Condon and J. C. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1935); J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill Book Company, Inc., New York, 1960).

Edlén, B.

B. Edlén, Monthly Notices Roy. Astron. Soc. 114, 700 (1954).

B. Edlén, Z. Astrophys. 22, 59 (1942); P. Kessler, Compt. Rend. 242, 350 (1956); Compt. Rend. 242, 742 (1956).

Layzer, D.

D. Layzer, Ann. Phys. 8, 271 (1959); D. Layzer and J. Bahcall, ibid.  17, 117 (1961).
[Crossref]

D. Layzer, Monthly Notices Roy. Astron. Soc. 114, 692 (1954).

Moore, C. E.

All experimental values of energy levels are taken from C. E. Moore, “Atomic Energy Levels,” Vols. I, II, and III; Circ. 467, National Bureau of Standards, Washington, D. C.

Shortley, J. C.

See for example: E. U. Condon and J. C. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1935); J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill Book Company, Inc., New York, 1960).

White, H. E.

H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Company, Inc., New York, 1934); P. G. Kruger and W. E. Shoup, Phys. Rev. 46, 124 (1934); R. F. Bacher and S. A. Goudsmit, ibid.  46, 948 (1934); C. G. Bedreag, Rev. Phys. Acad. Rep. Populaire Roumaine 2, 183 (1957); J. C. Slater, see Ref. 1—an extensive bibiography is given in Vol. II, pp. 383 to 431.
[Crossref]

H. E. White (see Ref. 4).

Ann. Phys. (1)

D. Layzer, Ann. Phys. 8, 271 (1959); D. Layzer and J. Bahcall, ibid.  17, 117 (1961).
[Crossref]

Monthly Notices Roy. Astron. Soc. (2)

B. Edlén, Monthly Notices Roy. Astron. Soc. 114, 700 (1954).

D. Layzer, Monthly Notices Roy. Astron. Soc. 114, 692 (1954).

Z. Astrophys. (1)

B. Edlén, Z. Astrophys. 22, 59 (1942); P. Kessler, Compt. Rend. 242, 350 (1956); Compt. Rend. 242, 742 (1956).

Other (4)

See for example: E. U. Condon and J. C. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1935); J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill Book Company, Inc., New York, 1960).

H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Company, Inc., New York, 1934); P. G. Kruger and W. E. Shoup, Phys. Rev. 46, 124 (1934); R. F. Bacher and S. A. Goudsmit, ibid.  46, 948 (1934); C. G. Bedreag, Rev. Phys. Acad. Rep. Populaire Roumaine 2, 183 (1957); J. C. Slater, see Ref. 1—an extensive bibiography is given in Vol. II, pp. 383 to 431.
[Crossref]

H. E. White (see Ref. 4).

All experimental values of energy levels are taken from C. E. Moore, “Atomic Energy Levels,” Vols. I, II, and III; Circ. 467, National Bureau of Standards, Washington, D. C.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Energy level—Z ratios. C i sequence 3P1 level ( 1 s 2 2 s 2 2 p 3 s ).

Fig. 2
Fig. 2

Comparison of 3 3Pi level of C i and 3 2 P 1 2 level of N i sequence.

Tables (12)

Tables Icon

Table I H sequence 2 P 1 2 level.

Tables Icon

Table II H i sequence 5 2 S 1 2.

Tables Icon

Table III He sequence 3P1 level.

Tables Icon

Table IV He sequence (energy levels 3P1 level for Mg xi and Al xii).

Tables Icon

Table V C i sequence 3P ( 1 s 2 2 s 2 2 p 2 ) term.a

Tables Icon

Table VI O i sequence; ground state 3P levels.

Tables Icon

Table VII O i sequence; 1D2 (ground term).

Tables Icon

Table VIII Al sequence (ground term).

Tables Icon

Table IX Cl i sequence 2 P 1 2 (ground term).

Tables Icon

Table X Values of s, a, and b for Tables V through IX.

Tables Icon

Table XI Ionization potentials He sequence (s = 1.031178, a = 103109 K, b = 100072 K).

Tables Icon

Table XII Ionization potential, C i sequence (s = 1.294744, a = −54313 K, b = 10541 K).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E = Z 0 2 R / ( n μ l ) 2 ,
E = ( Z σ ) 2 R / n 2 .
E / Z s = a + b Z ,
f ( s ) = ( Z 3 Z 1 ) ( E 2 / Z 2 s ) ( Z 2 Z 1 ) ( E 3 / Z 3 s ) ( Z 3 Z 2 ) ( E 1 / Z 1 s ) = 0.
f ( s ) = 1 Z 2 Z 1 ( E 2 Z 2 s E 1 Z 1 s ) 1 Z 4 Z 3 ( E 4 Z 4 s E 3 Z 3 s ) = 0.
s = s 0 [ f ( s 0 ) / f ( s 0 ) ] ,
s = 0.999973 , a = 102.086 K , b = 109 780.844 K .
s = 1.0007298 ( α 2 / n ) ,
b = b [ 1 ( 1 / n 2 ) ] ,
a = 12.7837 { 1 [ 2 + ( 1 α ) 1 2 ] / n } .
s = 1.0007298 ( 4.6 α 2 / n ) .
E = Z 1.17224 ( 4.33533 + 0.80689 Z ) × 10 4 .
O I : 3 P 1 , 3 P 0 , 1 D 2 ; Al I : 2 P 3 2 , 2 D 3 2 , 2 D 5 2 ; Cl I : 2 P 3 2 .