Abstract

A selective decrease in the spectral transmittance of cleaved LiF crystals at wavelengths shorter than 1600 Å has been observed when they are exposed to the atmosphere. The decrease is attributed to a surface layer produced on the crystals by reaction with moisture. It can be substantially inhibited by immediate post-cleavage storage in dry gas or in vacuum. Optical-quality thin plates of currently available, commercial hard-to-cleave LiF that is softer than LiF previously manufactured can be obtained by first hardening the crystal with x rays, cleaving the plates, and then thermally annealing out the optical effects of the x rays.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kato, S. Nakashima, K. Nakamura, and Y. Uchida, J. Phys. Soc. Japan 15, 2111 (1960).
    [Crossref]
  2. Harshaw Chemical Company, 1945 East 97th St., Cleveland 6, Ohio.
  3. K. E. Lennard-Jones and B. M. Dent, Trans. Faraday Soc. 24, 92 (1928).
    [Crossref]
  4. K. LeHovec, J. Chem. Phys. 21, 1123 (1953).
    [Crossref]
  5. J. J. Gilman and W. G. Johnston, , January1957.
  6. G. Jobst, Ann. Physik 78, 157 (1925); V. K. Lamer, J. Phys. Colloid Chem. 52, 65 (1958).
    [Crossref]
  7. J. Rolfe, Phys. Rev. Letters 1, 56 (1958); F. E. Pretzel, G. N. Rupert, C. L. Mader, E. K. Storms, G. V. Gritton, and C. C. Rushing, J. Phys. Chem. Solids 16, 10 (1960).
    [Crossref]
  8. G. Hass and R. Tousey, J. Opt. Soc. Am. 49, 593 (1959).
    [Crossref]
  9. At Naval Research Laboratory by W. Zimmerman, a former member of Crystal Branch, Solid State Division.
  10. J. S. Nadeau and W. G. Johnson, J. Appl. Phys. 32, 2563 (1961).
    [Crossref]

1961 (1)

J. S. Nadeau and W. G. Johnson, J. Appl. Phys. 32, 2563 (1961).
[Crossref]

1960 (1)

R. Kato, S. Nakashima, K. Nakamura, and Y. Uchida, J. Phys. Soc. Japan 15, 2111 (1960).
[Crossref]

1959 (1)

1958 (1)

J. Rolfe, Phys. Rev. Letters 1, 56 (1958); F. E. Pretzel, G. N. Rupert, C. L. Mader, E. K. Storms, G. V. Gritton, and C. C. Rushing, J. Phys. Chem. Solids 16, 10 (1960).
[Crossref]

1953 (1)

K. LeHovec, J. Chem. Phys. 21, 1123 (1953).
[Crossref]

1928 (1)

K. E. Lennard-Jones and B. M. Dent, Trans. Faraday Soc. 24, 92 (1928).
[Crossref]

1925 (1)

G. Jobst, Ann. Physik 78, 157 (1925); V. K. Lamer, J. Phys. Colloid Chem. 52, 65 (1958).
[Crossref]

Dent, B. M.

K. E. Lennard-Jones and B. M. Dent, Trans. Faraday Soc. 24, 92 (1928).
[Crossref]

Gilman, J. J.

J. J. Gilman and W. G. Johnston, , January1957.

Hass, G.

Jobst, G.

G. Jobst, Ann. Physik 78, 157 (1925); V. K. Lamer, J. Phys. Colloid Chem. 52, 65 (1958).
[Crossref]

Johnson, W. G.

J. S. Nadeau and W. G. Johnson, J. Appl. Phys. 32, 2563 (1961).
[Crossref]

Johnston, W. G.

J. J. Gilman and W. G. Johnston, , January1957.

Kato, R.

R. Kato, S. Nakashima, K. Nakamura, and Y. Uchida, J. Phys. Soc. Japan 15, 2111 (1960).
[Crossref]

LeHovec, K.

K. LeHovec, J. Chem. Phys. 21, 1123 (1953).
[Crossref]

Lennard-Jones, K. E.

K. E. Lennard-Jones and B. M. Dent, Trans. Faraday Soc. 24, 92 (1928).
[Crossref]

Nadeau, J. S.

J. S. Nadeau and W. G. Johnson, J. Appl. Phys. 32, 2563 (1961).
[Crossref]

Nakamura, K.

R. Kato, S. Nakashima, K. Nakamura, and Y. Uchida, J. Phys. Soc. Japan 15, 2111 (1960).
[Crossref]

Nakashima, S.

R. Kato, S. Nakashima, K. Nakamura, and Y. Uchida, J. Phys. Soc. Japan 15, 2111 (1960).
[Crossref]

Rolfe, J.

J. Rolfe, Phys. Rev. Letters 1, 56 (1958); F. E. Pretzel, G. N. Rupert, C. L. Mader, E. K. Storms, G. V. Gritton, and C. C. Rushing, J. Phys. Chem. Solids 16, 10 (1960).
[Crossref]

Tousey, R.

Uchida, Y.

R. Kato, S. Nakashima, K. Nakamura, and Y. Uchida, J. Phys. Soc. Japan 15, 2111 (1960).
[Crossref]

Ann. Physik (1)

G. Jobst, Ann. Physik 78, 157 (1925); V. K. Lamer, J. Phys. Colloid Chem. 52, 65 (1958).
[Crossref]

J. Appl. Phys. (1)

J. S. Nadeau and W. G. Johnson, J. Appl. Phys. 32, 2563 (1961).
[Crossref]

J. Chem. Phys. (1)

K. LeHovec, J. Chem. Phys. 21, 1123 (1953).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Soc. Japan (1)

R. Kato, S. Nakashima, K. Nakamura, and Y. Uchida, J. Phys. Soc. Japan 15, 2111 (1960).
[Crossref]

Phys. Rev. Letters (1)

J. Rolfe, Phys. Rev. Letters 1, 56 (1958); F. E. Pretzel, G. N. Rupert, C. L. Mader, E. K. Storms, G. V. Gritton, and C. C. Rushing, J. Phys. Chem. Solids 16, 10 (1960).
[Crossref]

Trans. Faraday Soc. (1)

K. E. Lennard-Jones and B. M. Dent, Trans. Faraday Soc. 24, 92 (1928).
[Crossref]

Other (3)

At Naval Research Laboratory by W. Zimmerman, a former member of Crystal Branch, Solid State Division.

Harshaw Chemical Company, 1945 East 97th St., Cleveland 6, Ohio.

J. J. Gilman and W. G. Johnston, , January1957.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectral transmittance of LiF: (a) freshly cleaved crystal; (b) the same crystal after 97 days in air; (c) another crystal showing OH absorption band at 1360 Å.

Fig. 2
Fig. 2

Typical transmittance curves of LiF at 1216 Å vs time in air. Crystals were cleaved in dry argon gas.

Fig. 3
Fig. 3

Transmittance at 1216 Å vs time in air. Transfer from room air to high-humidity air at 250 h caused more rapid decrease to “saturation level.” Crystals were cleaved in air.

Fig. 4
Fig. 4

Transmittance at 1216 Å vs time in air: Curve (a) At 200 h, a 20-h exposure to high vacuum decreased the transmittance to “saturation.” Five more days in a high vacuum had no effect. At 1042 h, 3 h in a high vacuum at 500°C caused further decrease. Curve (b) Effects of good vacuum exposures of 2 to 6 h are shown at 70, 135, 175, and 195 h. Crystals were cleaved in air.

Fig. 5
Fig. 5

Transmittance at 1216 Å vs time in air for two LiF crystals cleaved and stored in dry argon gas for 46 days before measurements.

Fig. 6
Fig. 6

A transmission photograph of a cleaved LiF crystal made at 1216 Å. The tear markings on both crystal surfaces are clearly visible.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ α N R 6 ,
( d τ / d t ) α 6 N ( d R / d t ) R 5 ,