Abstract

Stray light in a monochromator is analyzed. Stray coefficients are defined which allow the assessment, prediction, and correction of stray light errors. A method of measuring these stray coefficients by means of a discharge lamp and filters is described. The effect of slit dimensions is discussed. Measurements on the University of Cape Town single monochromator illustrate the method and indicate the possibilities and limitations of a single monochromator for lamp spectrophotometry.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. D. Einhorn and A. E. Z. Cohen, J. Opt. Soc. Am. 44, 232 (1954).
    [Crossref]
  2. J. S. Preston, J. Sci. Instr. 13, 368 (1936).
    [Crossref]
  3. H. H. Cary and A. O. Beckman, J. Opt. Soc. Am. 31, 686 (1941).
    [Crossref]
  4. T. R. Hognes, F. P. Zscheile, and A. E. Sidwell, J. Phys. Chem. 41, 379 (1937).
    [Crossref]
  5. R. Donaldson, J. Sci. Instr. 29, 150 (1952).
    [Crossref]
  6. B. S. Pritchard, J. Opt. Soc. Am. 45, 356 (1955).
    [Crossref]

1955 (1)

1954 (1)

1952 (1)

R. Donaldson, J. Sci. Instr. 29, 150 (1952).
[Crossref]

1941 (1)

H. H. Cary and A. O. Beckman, J. Opt. Soc. Am. 31, 686 (1941).
[Crossref]

1937 (1)

T. R. Hognes, F. P. Zscheile, and A. E. Sidwell, J. Phys. Chem. 41, 379 (1937).
[Crossref]

1936 (1)

J. S. Preston, J. Sci. Instr. 13, 368 (1936).
[Crossref]

Beckman, A. O.

H. H. Cary and A. O. Beckman, J. Opt. Soc. Am. 31, 686 (1941).
[Crossref]

Cary, H. H.

H. H. Cary and A. O. Beckman, J. Opt. Soc. Am. 31, 686 (1941).
[Crossref]

Cohen, A. E. Z.

Donaldson, R.

R. Donaldson, J. Sci. Instr. 29, 150 (1952).
[Crossref]

Einhorn, H. D.

Hognes, T. R.

T. R. Hognes, F. P. Zscheile, and A. E. Sidwell, J. Phys. Chem. 41, 379 (1937).
[Crossref]

Preston, J. S.

J. S. Preston, J. Sci. Instr. 13, 368 (1936).
[Crossref]

Pritchard, B. S.

Sidwell, A. E.

T. R. Hognes, F. P. Zscheile, and A. E. Sidwell, J. Phys. Chem. 41, 379 (1937).
[Crossref]

Zscheile, F. P.

T. R. Hognes, F. P. Zscheile, and A. E. Sidwell, J. Phys. Chem. 41, 379 (1937).
[Crossref]

J. Opt. Soc. Am. (3)

J. Phys. Chem. (1)

T. R. Hognes, F. P. Zscheile, and A. E. Sidwell, J. Phys. Chem. 41, 379 (1937).
[Crossref]

J. Sci. Instr. (2)

R. Donaldson, J. Sci. Instr. 29, 150 (1952).
[Crossref]

J. S. Preston, J. Sci. Instr. 13, 368 (1936).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Stray sending curves. Stray received in position x, sent from lines B(x = 24.5: λ = 436 mμ); G(45.3:546 mμ); R(53.7:644 mμ). x is in scale divisions of 0.212 cm. Thick lines are corrected curves (see Appendix 2), thin lines uncorrected from readings.

Fig. 2
Fig. 2

Stray sending curves. Stray received at x, sent from lines V(13.5:405 mμ and 14.6:409 mμ); Y(48.7:478 mμ); T(35.2:480 mμ and 40.2:509 mμ with nominal stray origin at center of energy 38.4).

Fig. 3
Fig. 3

Stray receiving curves (σ). Stray received at positions corresponding to 415, 480, 570, and 660 mμ from other spectrum regions of position x (in divisions of 0.212 cm).

Fig. 4
Fig. 4

Sensitivity-weighted stray receiving curves (σ*). Stray received at wavelengths 415, 480, 570, and 660 mμ from other spectrum regions of wavelength λs.

Fig. 5
Fig. 5

Typical stray measurements. Full line: readings with green filters to obtain stray from mercury 546-mμ line. Note: MslMsc. Broken line: readings with blue-green filters to correct at 509 mμ (see Appendix 3). Note: MLrMGr. From tests with D = 0.6 divisions.

Fig. 6
Fig. 6

The UCT spectrophotometer (see Appendix 3).

Fig. 7
Fig. 7

Energy calibration curve and dispersion nomogram of UCT spectrophotometer. K = ψ/p = relative sensitivity for continuous spectrum.

Tables (1)

Tables Icon

Table I Comparison of results by two methods.a

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

σ = 100 M s u / D H ( M s l + M s c d x / D ) .
M s u = H σ M s c d x + D H σ M s l .
M s u = σ M s c d x / D + σ M s l .
σ * = σ p s K s / K u in % / ( cm μ ) ,
M s u / M u c = H σ * ( e s / e u ) d λ + H σ * E s / e u ( % ) .
M s u / M u c = σ * ( e s / e u ) d λ / D + σ * E s / ( e u D ) .
M u c = D D H ψ u e u / p u .
M u l = D H ψ u E u .
d M s u c = σ D D H H ψ s e s d λ s ,
M s u l = σ D D H H ψ s E s .
M s u M u = ( d M s u c + M s u l ) / M u .
M s l = D H ψ s E s .
σ = 100 M s u l / ( D H M s u l ) ( in % / cm 2 ) .
M s c = D D H ψ s e s / p s .
M s u = M s u l + M s u c = σ D D H H ψ s ( E s + e s d λ ) = σ D D H H ψ s ( E s + e s d x / p s ) .
σ = 100 M s u / D H ( M s l + M s c d x / D ) ( in % / cm 2 ) .
( t s t s r )
M L r = t r F L + t r F G ,
M G r = t r F G ,
M L s = t s r F L + t s r F G + t s F S G ,
M G s = t s r F G + t s F S G ,
M S s = t s F S .
F S G F S = M G s M S s M L s M G s M L r M G r M G r M S s ;
σ = 100 D H M S s ( M G s M L s M G s M L r M G r M G r ) .
σ = 100 M G s D s H s M S s 100 M G r D r H r M S s M L s M G s M L r M G r .
M S s = M s l + M s c d x / D .