Abstract

Light in the sea may be produced by the sun or stars, by chemical or biological processes, or by man-made sources. Serving as the primary source of energy for the oceans and supporting their ecology, light also enables the native inhabitants of the water world, as well as humans and their devices, to see. In this paper, new data drawn from investigations spanning nearly two decades are used to illustrate an integrated account of the optical nature of ocean water, the distribution of flux diverging from localized underwater light sources, the propagation of highly collimated beams of light, the penetration of daylight into the sea, and the utilization of solar energy for many purposes including heating, photosynthesis, vision, and photography.

PDF Article

References

  • View by:
  • |
  • |

  1. See E. F. DuPré and L. H. Dawson, "Transmission of Light in Water: An Annotated Bibliography," U. S. Naval Research Laboratory Bibliography No. 20, April, 1961 for abstracts of 650 publications by over 400 authors in more than 150 Swiss, German, French, Italian, English, and U. S. journals and other sources from 1818 to 1959.
  2. S. Q. Duntley, Visibility Studies and Some Applications in the Field of Camouflage, Summary Tech. Rept. of Division 16, NDRC (Columbia University Press, 1946), Vol. II, Chap. 5, p. 212.
  3. See J. G. Moore, Phil. Trans. Roy. Soc. (London) A240, 163 (1946–48) for a method of using such data to determine depth and attenuation coefficients of shallow water.
  4. See G. A. Stamm and R. A. Hengel, J. Opt. Soc. Am. 51, 1090 (1961) for data on the spectral irradiance incident on the underside of an aircraft flying above the ocean.
  5. J. E. Tyler, Limnology and Oceanography 4, 102 (1959).
  6. S. Q. Duntley, Natl. Acad. Sci.—Natl. Research Council Publ. 473, 79 (1956).
  7. L. F. Drummeter and G. L. Knestrick, U. S. Naval Research Laboratory Rept. No. 5642 (1961).
  8. N. G. Jerlov, Kgl. Vetenskap. Vitterh. Handl. F.6, Ser. B, BD8. N:o 11 (1961).
  9. N. G. Jerlov, Reports of the Swedish Deep Sea Expedition of 1947–48 (1951), Vol. III, p. 49, Table 27.
  10. Multiple thermoclines often form in the upper portion of the sea; the maximum optical attenuation is associated with the maximum vertical temperature gradient and frequently falls on a secondary thermocline. Internal waves shift the scattering layer vertically. See E. C. La Fond, E. G. Barnham, and W. H. Armstrong, U. S. Navy Electronics Laboratory Rept. 1052 (July 1961), p. 15. Also see J. Joseph, Deut. Hydrograph. Z., Nr. 5 (1961).
  11. Scattering is also contributed by fine particles, by molecules of water, and by various solutes, but these contributions are usually quite minor and often difficult to detect. Even in very clear, blue ocean water scattering by water molecules produces only 7% of the total scattering coefficient and is dominant only at scattering angles near 90°, where it provides more than 2/3 of the scattered intensity (see reference 8); although the magnitude of this small component of scattering varies inversely as the fourth power of wavelength (λ−4), it is so heavily masked by nonselective scattering due to large particles that total scattering in the sea is virtually independent of wavelength. The prominent blue color of clear ocean water, apart from sky reflection, is due almost entirely to selective absorption by water molecules.
  12. L. H. Dawson and E. O. Hulburt, J. Opt. Soc. Am. 31, 554 (1941).
  13. J. E. Tyler, Limnology and Oceanography 6, 451 (1961).
  14. H. F. Aughey and F. J. Baum, J. Opt. Soc. Am. 44, 833 (1954).
  15. M. V. Koslyaninov, Trudy Inst. Okeanol. Acad. S.S.S.R. 25, 134 (1957).
  16. W. H. Richardson and R. W. Preisendorfer, Scripps Inst. Oceanog., Ref. 60–43 (1960).
  17. S. Glasstone and M. C. Edlund, Elements of Nuclear Reactor Theory (D. Van Nostrand and Company, Inc., Princeton, New Jersey, 1952), p. 107.
  18. R. W. Preisendorfer (private communication).
  19. S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. 42, 877(A) (1952).
  20. S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. (to be published).
  21. L. V. Whitney, J. Marine Research 4, 122 (1941). 22L. V. Whitney, J. Opt. Soc. Am. 31, 714 (1941).
  22. J. E. Tyler, Bull. Scripps Inst. Oceanog. 7, 363 (1960).
  23. R. W. Preisendorfer, J. Marine Research 18, 1 (1959).
  24. N. G. Jerlov and M. Fukuda, Tellus 12, 348 (1960).
  25. T. Sasaki, Bull. Japan. Soc. Sci. Fisheries 28, 489 (1962).
  26. R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–59, (1958).
  27. R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–60, (1958).
  28. R. W. Austin, Scripps Inst. Oceanog. Ref. 59–9, (1959).
  29. Along any underwater path of sight a remarkable proportion of the objects ordinarily encountered can be seen at limiting ranges between 4 and 5 times the distance 1/[α(z)−K(z,θ,ø cosθ] regardless of their size or the background against which they appear, provided ample daylight prevails [see Eqs. (14) and (15)].
  30. S. Q. Duntley, A. R. Boileau, and R. W. Preisendorfer, J. Opt. Soc. Am. 47, 499 (1957).
  31. S. Q. Duntley, J. Opt. Soc. Am. 37, 994(A) (1947) and U. S. Patent No. 2,661,650.
  32. S. Q. Duntley, Proc. Armed Forces-Natl. Research Council Vision Committee 23, 123 (1949); 27, 57 (1950); 28, 60 (1951).
  33. S. Q. Duntley and R. W. Preisendorfer, MIT Rept. N5ori 07864 (1952).
  34. R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–42 (1957).
  35. R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–41, (1957).
  36. S. Q. Duntley, Natl. Acad. Sci./Natl. Research Council Publ. 473, 85 (1956).

Armstrong, W. H.

Multiple thermoclines often form in the upper portion of the sea; the maximum optical attenuation is associated with the maximum vertical temperature gradient and frequently falls on a secondary thermocline. Internal waves shift the scattering layer vertically. See E. C. La Fond, E. G. Barnham, and W. H. Armstrong, U. S. Navy Electronics Laboratory Rept. 1052 (July 1961), p. 15. Also see J. Joseph, Deut. Hydrograph. Z., Nr. 5 (1961).

Aughey, H. F.

H. F. Aughey and F. J. Baum, J. Opt. Soc. Am. 44, 833 (1954).

Austin, R. W.

R. W. Austin, Scripps Inst. Oceanog. Ref. 59–9, (1959).

Barnham, E. G.

Multiple thermoclines often form in the upper portion of the sea; the maximum optical attenuation is associated with the maximum vertical temperature gradient and frequently falls on a secondary thermocline. Internal waves shift the scattering layer vertically. See E. C. La Fond, E. G. Barnham, and W. H. Armstrong, U. S. Navy Electronics Laboratory Rept. 1052 (July 1961), p. 15. Also see J. Joseph, Deut. Hydrograph. Z., Nr. 5 (1961).

Baum, F. J.

H. F. Aughey and F. J. Baum, J. Opt. Soc. Am. 44, 833 (1954).

Boileau, A. R.

S. Q. Duntley, A. R. Boileau, and R. W. Preisendorfer, J. Opt. Soc. Am. 47, 499 (1957).

Culver, W. H.

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. 42, 877(A) (1952).

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. (to be published).

Dawson, L. H.

See E. F. DuPré and L. H. Dawson, "Transmission of Light in Water: An Annotated Bibliography," U. S. Naval Research Laboratory Bibliography No. 20, April, 1961 for abstracts of 650 publications by over 400 authors in more than 150 Swiss, German, French, Italian, English, and U. S. journals and other sources from 1818 to 1959.

L. H. Dawson and E. O. Hulburt, J. Opt. Soc. Am. 31, 554 (1941).

Drummeter, L. F.

L. F. Drummeter and G. L. Knestrick, U. S. Naval Research Laboratory Rept. No. 5642 (1961).

Duntley, S. Q.

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. (to be published).

S. Q. Duntley, J. Opt. Soc. Am. 37, 994(A) (1947) and U. S. Patent No. 2,661,650.

S. Q. Duntley, Proc. Armed Forces-Natl. Research Council Vision Committee 23, 123 (1949); 27, 57 (1950); 28, 60 (1951).

S. Q. Duntley, A. R. Boileau, and R. W. Preisendorfer, J. Opt. Soc. Am. 47, 499 (1957).

S. Q. Duntley and R. W. Preisendorfer, MIT Rept. N5ori 07864 (1952).

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. 42, 877(A) (1952).

S. Q. Duntley, Natl. Acad. Sci./Natl. Research Council Publ. 473, 85 (1956).

S. Q. Duntley, Visibility Studies and Some Applications in the Field of Camouflage, Summary Tech. Rept. of Division 16, NDRC (Columbia University Press, 1946), Vol. II, Chap. 5, p. 212.

S. Q. Duntley, Natl. Acad. Sci.—Natl. Research Council Publ. 473, 79 (1956).

DuPré, E. F.

See E. F. DuPré and L. H. Dawson, "Transmission of Light in Water: An Annotated Bibliography," U. S. Naval Research Laboratory Bibliography No. 20, April, 1961 for abstracts of 650 publications by over 400 authors in more than 150 Swiss, German, French, Italian, English, and U. S. journals and other sources from 1818 to 1959.

Edlund, M. C.

S. Glasstone and M. C. Edlund, Elements of Nuclear Reactor Theory (D. Van Nostrand and Company, Inc., Princeton, New Jersey, 1952), p. 107.

Fond, E. C. La

Multiple thermoclines often form in the upper portion of the sea; the maximum optical attenuation is associated with the maximum vertical temperature gradient and frequently falls on a secondary thermocline. Internal waves shift the scattering layer vertically. See E. C. La Fond, E. G. Barnham, and W. H. Armstrong, U. S. Navy Electronics Laboratory Rept. 1052 (July 1961), p. 15. Also see J. Joseph, Deut. Hydrograph. Z., Nr. 5 (1961).

Fukuda, M.

N. G. Jerlov and M. Fukuda, Tellus 12, 348 (1960).

Glasstone, S.

S. Glasstone and M. C. Edlund, Elements of Nuclear Reactor Theory (D. Van Nostrand and Company, Inc., Princeton, New Jersey, 1952), p. 107.

Hengel, R. A.

See G. A. Stamm and R. A. Hengel, J. Opt. Soc. Am. 51, 1090 (1961) for data on the spectral irradiance incident on the underside of an aircraft flying above the ocean.

Hulburt, E. O.

L. H. Dawson and E. O. Hulburt, J. Opt. Soc. Am. 31, 554 (1941).

Jerlov, N. G.

N. G. Jerlov, Kgl. Vetenskap. Vitterh. Handl. F.6, Ser. B, BD8. N:o 11 (1961).

N. G. Jerlov and M. Fukuda, Tellus 12, 348 (1960).

N. G. Jerlov, Reports of the Swedish Deep Sea Expedition of 1947–48 (1951), Vol. III, p. 49, Table 27.

Knestrick, G. L.

L. F. Drummeter and G. L. Knestrick, U. S. Naval Research Laboratory Rept. No. 5642 (1961).

Koslyaninov, M. V.

M. V. Koslyaninov, Trudy Inst. Okeanol. Acad. S.S.S.R. 25, 134 (1957).

Moore, J. G.

See J. G. Moore, Phil. Trans. Roy. Soc. (London) A240, 163 (1946–48) for a method of using such data to determine depth and attenuation coefficients of shallow water.

Preisendorfer, R. W.

R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–41, (1957).

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. (to be published).

R. W. Preisendorfer (private communication).

S. Q. Duntley, A. R. Boileau, and R. W. Preisendorfer, J. Opt. Soc. Am. 47, 499 (1957).

W. H. Richardson and R. W. Preisendorfer, Scripps Inst. Oceanog., Ref. 60–43 (1960).

R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–59, (1958).

S. Q. Duntley and R. W. Preisendorfer, MIT Rept. N5ori 07864 (1952).

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. 42, 877(A) (1952).

R. W. Preisendorfer, J. Marine Research 18, 1 (1959).

R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–60, (1958).

R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–42 (1957).

Richardson, W. H.

W. H. Richardson and R. W. Preisendorfer, Scripps Inst. Oceanog., Ref. 60–43 (1960).

Richey, F.

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. 42, 877(A) (1952).

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. (to be published).

Sasaki, T.

T. Sasaki, Bull. Japan. Soc. Sci. Fisheries 28, 489 (1962).

Stamm, G. A.

See G. A. Stamm and R. A. Hengel, J. Opt. Soc. Am. 51, 1090 (1961) for data on the spectral irradiance incident on the underside of an aircraft flying above the ocean.

Tyler, J. E.

J. E. Tyler, Bull. Scripps Inst. Oceanog. 7, 363 (1960).

J. E. Tyler, Limnology and Oceanography 4, 102 (1959).

J. E. Tyler, Limnology and Oceanography 6, 451 (1961).

Whitney, L. V.

L. V. Whitney, J. Marine Research 4, 122 (1941). 22L. V. Whitney, J. Opt. Soc. Am. 31, 714 (1941).

Other (36)

See E. F. DuPré and L. H. Dawson, "Transmission of Light in Water: An Annotated Bibliography," U. S. Naval Research Laboratory Bibliography No. 20, April, 1961 for abstracts of 650 publications by over 400 authors in more than 150 Swiss, German, French, Italian, English, and U. S. journals and other sources from 1818 to 1959.

S. Q. Duntley, Visibility Studies and Some Applications in the Field of Camouflage, Summary Tech. Rept. of Division 16, NDRC (Columbia University Press, 1946), Vol. II, Chap. 5, p. 212.

See J. G. Moore, Phil. Trans. Roy. Soc. (London) A240, 163 (1946–48) for a method of using such data to determine depth and attenuation coefficients of shallow water.

See G. A. Stamm and R. A. Hengel, J. Opt. Soc. Am. 51, 1090 (1961) for data on the spectral irradiance incident on the underside of an aircraft flying above the ocean.

J. E. Tyler, Limnology and Oceanography 4, 102 (1959).

S. Q. Duntley, Natl. Acad. Sci.—Natl. Research Council Publ. 473, 79 (1956).

L. F. Drummeter and G. L. Knestrick, U. S. Naval Research Laboratory Rept. No. 5642 (1961).

N. G. Jerlov, Kgl. Vetenskap. Vitterh. Handl. F.6, Ser. B, BD8. N:o 11 (1961).

N. G. Jerlov, Reports of the Swedish Deep Sea Expedition of 1947–48 (1951), Vol. III, p. 49, Table 27.

Multiple thermoclines often form in the upper portion of the sea; the maximum optical attenuation is associated with the maximum vertical temperature gradient and frequently falls on a secondary thermocline. Internal waves shift the scattering layer vertically. See E. C. La Fond, E. G. Barnham, and W. H. Armstrong, U. S. Navy Electronics Laboratory Rept. 1052 (July 1961), p. 15. Also see J. Joseph, Deut. Hydrograph. Z., Nr. 5 (1961).

Scattering is also contributed by fine particles, by molecules of water, and by various solutes, but these contributions are usually quite minor and often difficult to detect. Even in very clear, blue ocean water scattering by water molecules produces only 7% of the total scattering coefficient and is dominant only at scattering angles near 90°, where it provides more than 2/3 of the scattered intensity (see reference 8); although the magnitude of this small component of scattering varies inversely as the fourth power of wavelength (λ−4), it is so heavily masked by nonselective scattering due to large particles that total scattering in the sea is virtually independent of wavelength. The prominent blue color of clear ocean water, apart from sky reflection, is due almost entirely to selective absorption by water molecules.

L. H. Dawson and E. O. Hulburt, J. Opt. Soc. Am. 31, 554 (1941).

J. E. Tyler, Limnology and Oceanography 6, 451 (1961).

H. F. Aughey and F. J. Baum, J. Opt. Soc. Am. 44, 833 (1954).

M. V. Koslyaninov, Trudy Inst. Okeanol. Acad. S.S.S.R. 25, 134 (1957).

W. H. Richardson and R. W. Preisendorfer, Scripps Inst. Oceanog., Ref. 60–43 (1960).

S. Glasstone and M. C. Edlund, Elements of Nuclear Reactor Theory (D. Van Nostrand and Company, Inc., Princeton, New Jersey, 1952), p. 107.

R. W. Preisendorfer (private communication).

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. 42, 877(A) (1952).

S. Q. Duntley, W. H. Culver, F. Richey, and R. W. Preisendorfer, J. Opt. Soc. Am. (to be published).

L. V. Whitney, J. Marine Research 4, 122 (1941). 22L. V. Whitney, J. Opt. Soc. Am. 31, 714 (1941).

J. E. Tyler, Bull. Scripps Inst. Oceanog. 7, 363 (1960).

R. W. Preisendorfer, J. Marine Research 18, 1 (1959).

N. G. Jerlov and M. Fukuda, Tellus 12, 348 (1960).

T. Sasaki, Bull. Japan. Soc. Sci. Fisheries 28, 489 (1962).

R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–59, (1958).

R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–60, (1958).

R. W. Austin, Scripps Inst. Oceanog. Ref. 59–9, (1959).

Along any underwater path of sight a remarkable proportion of the objects ordinarily encountered can be seen at limiting ranges between 4 and 5 times the distance 1/[α(z)−K(z,θ,ø cosθ] regardless of their size or the background against which they appear, provided ample daylight prevails [see Eqs. (14) and (15)].

S. Q. Duntley, A. R. Boileau, and R. W. Preisendorfer, J. Opt. Soc. Am. 47, 499 (1957).

S. Q. Duntley, J. Opt. Soc. Am. 37, 994(A) (1947) and U. S. Patent No. 2,661,650.

S. Q. Duntley, Proc. Armed Forces-Natl. Research Council Vision Committee 23, 123 (1949); 27, 57 (1950); 28, 60 (1951).

S. Q. Duntley and R. W. Preisendorfer, MIT Rept. N5ori 07864 (1952).

R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–42 (1957).

R. W. Preisendorfer, Scripps Inst. Oceanog. Ref. 58–41, (1957).

S. Q. Duntley, Natl. Acad. Sci./Natl. Research Council Publ. 473, 85 (1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.