Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. L. Holladay, J. Opt. Soc. Am. 12, 492 (1926).
    [Crossref]
  2. W. S. Stiles, Proc. Roy. Soc. (London) 104B, 332 (1929).
  3. W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 122B, 255 (1937).
  4. Y. le Grand, Rev. Opt. 16, 201, 241 (1937).
  5. G. A. Fry and M. Alpern, J. Opt. Soc. Am. 43, 189 (1953).
    [Crossref] [PubMed]
  6. W. S. Stiles, Proc. Roy. Soc. (London) 105B, 131 (1930).
  7. G. A. Fry, Ill. Eng. 49, 98 (1954).
  8. J. J. Vos and M. A. Bouman, Proc. CIE (Brussels)1959, 298.
  9. J. J. Vos, J. Opt. Soc. Am. (to be published).
  10. W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 112B, 428 (1933).

1954 (1)

G. A. Fry, Ill. Eng. 49, 98 (1954).

1953 (1)

1937 (2)

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 122B, 255 (1937).

Y. le Grand, Rev. Opt. 16, 201, 241 (1937).

1933 (1)

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 112B, 428 (1933).

1930 (1)

W. S. Stiles, Proc. Roy. Soc. (London) 105B, 131 (1930).

1929 (1)

W. S. Stiles, Proc. Roy. Soc. (London) 104B, 332 (1929).

1926 (1)

L. L. Holladay, J. Opt. Soc. Am. 12, 492 (1926).
[Crossref]

Alpern, M.

Bouman, M. A.

J. J. Vos and M. A. Bouman, Proc. CIE (Brussels)1959, 298.

Crawford, B. H.

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 122B, 255 (1937).

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 112B, 428 (1933).

Fry, G. A.

Holladay, L. L.

L. L. Holladay, J. Opt. Soc. Am. 12, 492 (1926).
[Crossref]

le Grand, Y.

Y. le Grand, Rev. Opt. 16, 201, 241 (1937).

Stiles, W. S.

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 122B, 255 (1937).

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 112B, 428 (1933).

W. S. Stiles, Proc. Roy. Soc. (London) 105B, 131 (1930).

W. S. Stiles, Proc. Roy. Soc. (London) 104B, 332 (1929).

Vos, J. J.

J. J. Vos and M. A. Bouman, Proc. CIE (Brussels)1959, 298.

J. J. Vos, J. Opt. Soc. Am. (to be published).

Ill. Eng. (1)

G. A. Fry, Ill. Eng. 49, 98 (1954).

J. Opt. Soc. Am. (2)

Proc. Roy. Soc. (London) (4)

W. S. Stiles, Proc. Roy. Soc. (London) 104B, 332 (1929).

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 122B, 255 (1937).

W. S. Stiles, Proc. Roy. Soc. (London) 105B, 131 (1930).

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) 112B, 428 (1933).

Rev. Opt. (1)

Y. le Grand, Rev. Opt. 16, 201, 241 (1937).

Other (2)

J. J. Vos and M. A. Bouman, Proc. CIE (Brussels)1959, 298.

J. J. Vos, J. Opt. Soc. Am. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The experimental arrangement. The two light paths, mixed by M1 and M2, are essentially similar. In the upper half the imaging of the field of view is represented, in the lower half the imaging of the light source. For further explanation, see text.

Fig. 2
Fig. 2

The change in the threshold of perception with the eccentricity of both the test and the mask beam. (a) The absolute threshold shows the well-known Stiles–Crawford effect. (b), (c), (d) The effect disappears in contrast threshold experiments, when the Weber–Fechner domain is reached [(ΔB/B)=(ηΔB/ηB)]. (e), (f), (g) In glare situations, the Stiles–Crawford effect only partly disappears, because the fundus component of stray light does not decrease in luminous efficiency.

Fig. 3
Fig. 3

The decrease in luminance of the entoptic glare veil with increasing eccentricity of the entrance of the glare beam at the pupil. Curve a should be expected if all entoptic stray light came from the fundus, Curve c if all came from the cornea and the crystalline lens.

Fig. 4
Fig. 4

The absence of a change in threshold with the eccentricity of entrance at the pupil at scotopic perceptive conditions, even in the glare situation, demonstrates that an eventual decrease in the scatter contribution of the lens toward the iris border plays no role of significance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

b = α × a + ( 1 - α ) × c .