Abstract

The total radiant flux from a solution containing a radioactive compound, hexadecane-1-C14, plus an appropriate scintillator has been determined. The procedure used involves comparison of its luminescent emission with the light scattered by glycogen illuminated with a monochromatic homogeneous light beam of known photon flux. From the result obtained the scintillation quantum yield of β disintegration from carbon 14 has been determined to be 793 photons; thus 5.25% of the energy appears as light.

© 1963 Optical Society of America

Full Article  |  PDF Article

Corrections

Hastings J. Woodland and Gregorio Weber, "Erratum," J. Opt. Soc. Am. 57, 1554-1554 (1967)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-57-12-1554

References

  • View by:
  • |
  • |
  • |

  1. A homogeneous source is one in which the flux per unit volume of source is constant over any small portion of it.
  2. An isotropic source is one in which the flux is independent of the direction considered.
  3. C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).
  4. G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1957).
    [Crossref]
  5. E. J. Bowen, Proc. Roy Soc. (London) A154, 349 (1936).
  6. C. A. Parker, Proc. Roy. Soc. (London) A220, 104 (1953).
  7. A. Keynan and J. W. Hastings, Biol. Bull. 121, 375 (1961).
  8. E. N. Harvey, Bioluminescence (Academic Press Inc., New York, 1952).
  9. J. B. Birks and K. N. Kuchela, Proc. Phys. Soc. 77, 1083 (1961).
    [Crossref]
  10. G. Weber and F. W. J. Teale, Trans. Faraday Soc. 54, 640 (1958).
    [Crossref]
  11. R. K. Swank, W. L. Buck, F. N. Haynes, and D. G. Ott, Rev. Sci. Instr. 29, 279 (1958).
    [Crossref]
  12. J. B. Birks and I. H. Munro, Brit. J. Appl. Phys. 12, 519 (1961).
    [Crossref]
  13. Three grams of 2:5 diphenyloxazole (PPO) and 50 mg of 2-2′ p-phenylbis (5 phenyloxazole) (POPOP) per liter of toluene.
  14. Although this intensity was near the sensitivity limit of our instrument, the exact value was verified by measurements of more concentrated standards prior to qualitative dilution.
  15. Packard Instrument Company, La Grange, Illinois.
  16. G. H. Jenks and F. H. Sweeton, Phys. Rev. 86, 803 (1952).
    [Crossref]
  17. B. L. Funt and A. Hetherington, Science 131, 1608 (1960).
    [Crossref] [PubMed]
  18. Available from Nuclear Enterprises Ltd., 550 Berry Street, Winnepeg 21, Canada.
  19. M. J. Cormier and J. R. Totter, Biochim. Biophys. Acta 25, 229 (1957).
    [Crossref] [PubMed]
  20. H. H. Seliger and W. D. McElroy, Arch. Biochem. Biophys. 88, 136 (1960).
    [Crossref] [PubMed]
  21. F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
    [Crossref]
  22. W. Terpstra, Biochim. Biophys. Acta 60, 580 (1962).
    [Crossref] [PubMed]
  23. J. W. Hastings and Q. H. Gibson, J. Biol. Chem. 238, 2537 (1963).
    [PubMed]

1963 (1)

J. W. Hastings and Q. H. Gibson, J. Biol. Chem. 238, 2537 (1963).
[PubMed]

1962 (2)

F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
[Crossref]

W. Terpstra, Biochim. Biophys. Acta 60, 580 (1962).
[Crossref] [PubMed]

1961 (3)

J. B. Birks and I. H. Munro, Brit. J. Appl. Phys. 12, 519 (1961).
[Crossref]

A. Keynan and J. W. Hastings, Biol. Bull. 121, 375 (1961).

J. B. Birks and K. N. Kuchela, Proc. Phys. Soc. 77, 1083 (1961).
[Crossref]

1960 (2)

B. L. Funt and A. Hetherington, Science 131, 1608 (1960).
[Crossref] [PubMed]

H. H. Seliger and W. D. McElroy, Arch. Biochem. Biophys. 88, 136 (1960).
[Crossref] [PubMed]

1958 (2)

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 54, 640 (1958).
[Crossref]

R. K. Swank, W. L. Buck, F. N. Haynes, and D. G. Ott, Rev. Sci. Instr. 29, 279 (1958).
[Crossref]

1957 (2)

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1957).
[Crossref]

M. J. Cormier and J. R. Totter, Biochim. Biophys. Acta 25, 229 (1957).
[Crossref] [PubMed]

1956 (1)

C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).

1953 (1)

C. A. Parker, Proc. Roy. Soc. (London) A220, 104 (1953).

1952 (1)

G. H. Jenks and F. H. Sweeton, Phys. Rev. 86, 803 (1952).
[Crossref]

1936 (1)

E. J. Bowen, Proc. Roy Soc. (London) A154, 349 (1936).

Birks, J. B.

J. B. Birks and K. N. Kuchela, Proc. Phys. Soc. 77, 1083 (1961).
[Crossref]

J. B. Birks and I. H. Munro, Brit. J. Appl. Phys. 12, 519 (1961).
[Crossref]

Bowen, E. J.

E. J. Bowen, Proc. Roy Soc. (London) A154, 349 (1936).

Buck, W. L.

R. K. Swank, W. L. Buck, F. N. Haynes, and D. G. Ott, Rev. Sci. Instr. 29, 279 (1958).
[Crossref]

Cormier, M. J.

M. J. Cormier and J. R. Totter, Biochim. Biophys. Acta 25, 229 (1957).
[Crossref] [PubMed]

Funt, B. L.

B. L. Funt and A. Hetherington, Science 131, 1608 (1960).
[Crossref] [PubMed]

Gershman, L. C.

F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
[Crossref]

Gibson, Q. H.

J. W. Hastings and Q. H. Gibson, J. Biol. Chem. 238, 2537 (1963).
[PubMed]

Harvey, E. N.

E. N. Harvey, Bioluminescence (Academic Press Inc., New York, 1952).

Hastings, J. W.

J. W. Hastings and Q. H. Gibson, J. Biol. Chem. 238, 2537 (1963).
[PubMed]

A. Keynan and J. W. Hastings, Biol. Bull. 121, 375 (1961).

Hatchard, C. G.

C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).

Haynes, F. N.

R. K. Swank, W. L. Buck, F. N. Haynes, and D. G. Ott, Rev. Sci. Instr. 29, 279 (1958).
[Crossref]

Hetherington, A.

B. L. Funt and A. Hetherington, Science 131, 1608 (1960).
[Crossref] [PubMed]

Jenks, G. H.

G. H. Jenks and F. H. Sweeton, Phys. Rev. 86, 803 (1952).
[Crossref]

Johnson, F. H.

F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
[Crossref]

Keynan, A.

A. Keynan and J. W. Hastings, Biol. Bull. 121, 375 (1961).

Kuchela, K. N.

J. B. Birks and K. N. Kuchela, Proc. Phys. Soc. 77, 1083 (1961).
[Crossref]

McElroy, W. D.

H. H. Seliger and W. D. McElroy, Arch. Biochem. Biophys. 88, 136 (1960).
[Crossref] [PubMed]

Munro, I. H.

J. B. Birks and I. H. Munro, Brit. J. Appl. Phys. 12, 519 (1961).
[Crossref]

Ott, D. G.

R. K. Swank, W. L. Buck, F. N. Haynes, and D. G. Ott, Rev. Sci. Instr. 29, 279 (1958).
[Crossref]

Parker, C. A.

C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).

C. A. Parker, Proc. Roy. Soc. (London) A220, 104 (1953).

Reynolds, G. T.

F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
[Crossref]

Saiga, Y.

F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
[Crossref]

Seliger, H. H.

H. H. Seliger and W. D. McElroy, Arch. Biochem. Biophys. 88, 136 (1960).
[Crossref] [PubMed]

Shimomura, Q.

F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
[Crossref]

Swank, R. K.

R. K. Swank, W. L. Buck, F. N. Haynes, and D. G. Ott, Rev. Sci. Instr. 29, 279 (1958).
[Crossref]

Sweeton, F. H.

G. H. Jenks and F. H. Sweeton, Phys. Rev. 86, 803 (1952).
[Crossref]

Teale, F. W. J.

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 54, 640 (1958).
[Crossref]

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1957).
[Crossref]

Terpstra, W.

W. Terpstra, Biochim. Biophys. Acta 60, 580 (1962).
[Crossref] [PubMed]

Totter, J. R.

M. J. Cormier and J. R. Totter, Biochim. Biophys. Acta 25, 229 (1957).
[Crossref] [PubMed]

Waters, J. R.

F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
[Crossref]

Weber, G.

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 54, 640 (1958).
[Crossref]

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1957).
[Crossref]

Arch. Biochem. Biophys. (1)

H. H. Seliger and W. D. McElroy, Arch. Biochem. Biophys. 88, 136 (1960).
[Crossref] [PubMed]

Biochim. Biophys. Acta (2)

M. J. Cormier and J. R. Totter, Biochim. Biophys. Acta 25, 229 (1957).
[Crossref] [PubMed]

W. Terpstra, Biochim. Biophys. Acta 60, 580 (1962).
[Crossref] [PubMed]

Biol. Bull. (1)

A. Keynan and J. W. Hastings, Biol. Bull. 121, 375 (1961).

Brit. J. Appl. Phys. (1)

J. B. Birks and I. H. Munro, Brit. J. Appl. Phys. 12, 519 (1961).
[Crossref]

J. Biol. Chem. (1)

J. W. Hastings and Q. H. Gibson, J. Biol. Chem. 238, 2537 (1963).
[PubMed]

J. Cell. Comp. Physiol. (1)

F. H. Johnson, Q. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds, and J. R. Waters, J. Cell. Comp. Physiol. 60, 85 (1962).
[Crossref]

Phys. Rev. (1)

G. H. Jenks and F. H. Sweeton, Phys. Rev. 86, 803 (1952).
[Crossref]

Proc. Phys. Soc. (1)

J. B. Birks and K. N. Kuchela, Proc. Phys. Soc. 77, 1083 (1961).
[Crossref]

Proc. Roy Soc. (London) (1)

E. J. Bowen, Proc. Roy Soc. (London) A154, 349 (1936).

Proc. Roy. Soc. (London) (2)

C. A. Parker, Proc. Roy. Soc. (London) A220, 104 (1953).

C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).

Rev. Sci. Instr. (1)

R. K. Swank, W. L. Buck, F. N. Haynes, and D. G. Ott, Rev. Sci. Instr. 29, 279 (1958).
[Crossref]

Science (1)

B. L. Funt and A. Hetherington, Science 131, 1608 (1960).
[Crossref] [PubMed]

Trans. Faraday Soc. (2)

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 54, 640 (1958).
[Crossref]

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1957).
[Crossref]

Other (7)

A homogeneous source is one in which the flux per unit volume of source is constant over any small portion of it.

An isotropic source is one in which the flux is independent of the direction considered.

E. N. Harvey, Bioluminescence (Academic Press Inc., New York, 1952).

Available from Nuclear Enterprises Ltd., 550 Berry Street, Winnepeg 21, Canada.

Three grams of 2:5 diphenyloxazole (PPO) and 50 mg of 2-2′ p-phenylbis (5 phenyloxazole) (POPOP) per liter of toluene.

Although this intensity was near the sensitivity limit of our instrument, the exact value was verified by measurements of more concentrated standards prior to qualitative dilution.

Packard Instrument Company, La Grange, Illinois.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of arrangement for standardization. B represents beam of cross section A; F1 and F2 filters; D1 and D2, phototubes; C and R, cuvettes; dotted lines, scattered rays; path length, l, of cuvette, C.

Fig. 2
Fig. 2

Schematic drawing of phototube and vial housing for measuring weak luminescence. A, photomultipler; B, cylindrical shutter mechanism operated by rotation; C, housing (with provision for temperature control) to contain vial D with luminescent solution; E, covers with special provision for accommodating hypodermic-syringe needle to add substances to vial during observations; F, dynode, anode, and cathode connections with drying agent in smaller compartment.

Fig. 3
Fig. 3

Relative phototube response vs volume of luminescent solution measured in the geometry of Fig. 2.

Fig. 4
Fig. 4

Emission spectrum of light from scintillator mixture (PPO and POPOP in toluene) excited by decay of tritium (2.5 mCi per ml). Curve corrected for monochromator efficiency and phototube sensitivity. Bausch & Lomb grating monochromator, bandwidth 13 .

Tables (1)

Tables Icon

Table I Spectral distribution of luminescences and phototube spectral sensitivity. Δλ is 10 mμ centered at λ.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

W = H f / l .
S = S 90 [ 1 + ( p / 3 ) ] ,
W = k 1 ( x ) k 2 ( λ ) S 90 [ 1 + ( p / 3 ) ] .
W = S 90 k 1 ( x ) k 2 ( λ ) ,
k 2 ( Δ λ ) = Δ λ k 2 ( λ ) φ ( λ ) d λ / Δ λ φ ( λ ) d λ .
W = W S 90 S 90 [ 1 + ( p / 3 ) ] .
m = c v 10 - 3 / t .
m N = N ( E v / K l t ) 10 - 3 ,
H = m N q A f 0 = N E v q A f 0 K l t 10 - 3 photons sec - 1 cm - 2 .
H = 1.43 × 10 13 quanta sec - 1 cm - 2 .
W G = ( 6.4 × 10 - 2 ) ( 1.43 × 10 13 ) = 9.16 × 10 11 quanta sec - 1 cm - 3 .
W B = W G [ S B / ( S G - S W ) ] 1.32.
W T = W B S T S B k 2 ( Δ λ T ) k 2 ( Δ λ B ) = 4.91 × 10 8 quanta sec - 1 cm - 3 .
q = W T / N β -
q = W c / N β -
Q = W c λ / N β - c ,
q = 2.58 × 10 6 3.25 × 10 3 = 793 photons per β - disintegration .