Abstract

A new method for the study of color vision is introduced where two test flashes are used in an increment-threshold experiment. Summation index is defined as the logarithm of the factor by which threshold is reduced when the two light flashes are presented together in the ratio of their individual threshold radiances. When the wavelength of one test flash is fixed at 630 mμ and the wavelength of the other flash is varied, a summation-index curve can be drawn as a function of the wavelength of the second flash. This curve is assumed to reveal the interrelations between the underlying mechanisms for color discrimination which are stimulated by the first test flash and the second test flash, respectively. Two different durations of the test flash are employed and two different summation-index curves are obtained. It is found that under certain conditions the summation index becomes smaller than that predicted by probability summation, which suggests an inhibition between two mechanisms. With the aid of the experimental spectral sensitivity curves obtained under the same adapting conditions as above, the summation-index curves are interpreted with the help of conceptions of opponent-colors theory.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For the latest summary of Stiles’ work, see W. S. Stiles, Proc. Natl. Acad. Sci. U. S. 45, 100 (1959).
    [Crossref]
  2. Thorough discussion on Stiles’ experiment is found in W. S. Stiles, Union Intern. Phys. Appl. (Madrid) 1, 65 (1953).
  3. Stiles called these “tvi” curves (threshold vs intensity); this change is employed to accord with modern usage of radiance as the appropriate concept for fields having a finite area.
  4. Introduction of this new method is due to Stiles. Formulations to follow are also due to him.
  5. For example, R. M. Boynton, G. Kandel, and J. Onley, J. Opt. Soc. Am. 49, 654 (1959).
    [Crossref] [PubMed]
  6. The apparatus actually used for the present experiment had five main channels, I, II, III, IV, and V, for other purposes as well. Here only three of them are shown.
  7. W. S. Stiles, Doc. Ophthalmol. 3, 138 (1949).
    [Crossref]
  8. In the present experiment the probability-of-seeing curve is not available for each mechanism. It is assumed instead that one experimentally obtained probability-of-seeing curve can be generalized for all mechanisms. Circles in Fig. 8(a) where a probability of seeing is shown by py, were obtained from subject MI under the same conditions of adaptation as in the present experiment, with a test stimulus of 500 mμ, but with a duration of 200 msec.
  9. D. B. Judd, J. Res. Natl. Bur. Std. U. S. 42, 1 (1949).
    [Crossref]
  10. L. M. Hurvich and D. Jameson, J. Opt. Soc. Am. 45, 546, 602 (1955); ibid. 46, 405, 416 (1956); Psychol. Rev. 64, 384 (1957); in Visual Problems of Colour (Her Majesty’s Stationery Office, London, 1958), Vol. 2, p. 691.
    [Crossref]
  11. R. M. Boynton, J. Opt. Soc. Am. 50, 929 (1960).
    [Crossref]
  12. G. Svaetichin, Acta Physiol. Scand. Suppl. 134, 17 (1956).
  13. E. F. MacNichol and G. Svaetichin, Am. J. Ophthalmol. 46, 26 (1958).
  14. H. G. Wagner, E. F. MacNichol, and M. L. Wolbarsht, J. Gen. Physiol. 43, 45 (1960).
  15. K. Motokawa, T. Oikawa, and K. Tasaki, J. Neurophysiol. 20, 186 (1957).
    [PubMed]
  16. T. Tomita, T. Tosaka, K. Watanabe, and Y. Sato, Japan. J. Physiol. 8, 41 (1958).
    [Crossref]
  17. D. H. Huebel and T. N. Wiesel, J. Physiol. 154, 572 (1960).
  18. R. L. DeValois, J. Gen. Physiol. 43, 115 (1960).
    [Crossref]
  19. M. Ikeda and R. M. Boynton, J. Opt. Soc. Am. 52, 697 (1962).
    [Crossref]

1962 (1)

1960 (4)

H. G. Wagner, E. F. MacNichol, and M. L. Wolbarsht, J. Gen. Physiol. 43, 45 (1960).

D. H. Huebel and T. N. Wiesel, J. Physiol. 154, 572 (1960).

R. L. DeValois, J. Gen. Physiol. 43, 115 (1960).
[Crossref]

R. M. Boynton, J. Opt. Soc. Am. 50, 929 (1960).
[Crossref]

1959 (2)

For the latest summary of Stiles’ work, see W. S. Stiles, Proc. Natl. Acad. Sci. U. S. 45, 100 (1959).
[Crossref]

For example, R. M. Boynton, G. Kandel, and J. Onley, J. Opt. Soc. Am. 49, 654 (1959).
[Crossref] [PubMed]

1958 (2)

E. F. MacNichol and G. Svaetichin, Am. J. Ophthalmol. 46, 26 (1958).

T. Tomita, T. Tosaka, K. Watanabe, and Y. Sato, Japan. J. Physiol. 8, 41 (1958).
[Crossref]

1957 (1)

K. Motokawa, T. Oikawa, and K. Tasaki, J. Neurophysiol. 20, 186 (1957).
[PubMed]

1956 (1)

G. Svaetichin, Acta Physiol. Scand. Suppl. 134, 17 (1956).

1955 (1)

1953 (1)

Thorough discussion on Stiles’ experiment is found in W. S. Stiles, Union Intern. Phys. Appl. (Madrid) 1, 65 (1953).

1949 (2)

W. S. Stiles, Doc. Ophthalmol. 3, 138 (1949).
[Crossref]

D. B. Judd, J. Res. Natl. Bur. Std. U. S. 42, 1 (1949).
[Crossref]

Boynton, R. M.

DeValois, R. L.

R. L. DeValois, J. Gen. Physiol. 43, 115 (1960).
[Crossref]

Huebel, D. H.

D. H. Huebel and T. N. Wiesel, J. Physiol. 154, 572 (1960).

Hurvich, L. M.

Ikeda, M.

Jameson, D.

Judd, D. B.

D. B. Judd, J. Res. Natl. Bur. Std. U. S. 42, 1 (1949).
[Crossref]

Kandel, G.

MacNichol, E. F.

H. G. Wagner, E. F. MacNichol, and M. L. Wolbarsht, J. Gen. Physiol. 43, 45 (1960).

E. F. MacNichol and G. Svaetichin, Am. J. Ophthalmol. 46, 26 (1958).

Motokawa, K.

K. Motokawa, T. Oikawa, and K. Tasaki, J. Neurophysiol. 20, 186 (1957).
[PubMed]

Oikawa, T.

K. Motokawa, T. Oikawa, and K. Tasaki, J. Neurophysiol. 20, 186 (1957).
[PubMed]

Onley, J.

Sato, Y.

T. Tomita, T. Tosaka, K. Watanabe, and Y. Sato, Japan. J. Physiol. 8, 41 (1958).
[Crossref]

Stiles, W. S.

For the latest summary of Stiles’ work, see W. S. Stiles, Proc. Natl. Acad. Sci. U. S. 45, 100 (1959).
[Crossref]

Thorough discussion on Stiles’ experiment is found in W. S. Stiles, Union Intern. Phys. Appl. (Madrid) 1, 65 (1953).

W. S. Stiles, Doc. Ophthalmol. 3, 138 (1949).
[Crossref]

Svaetichin, G.

E. F. MacNichol and G. Svaetichin, Am. J. Ophthalmol. 46, 26 (1958).

G. Svaetichin, Acta Physiol. Scand. Suppl. 134, 17 (1956).

Tasaki, K.

K. Motokawa, T. Oikawa, and K. Tasaki, J. Neurophysiol. 20, 186 (1957).
[PubMed]

Tomita, T.

T. Tomita, T. Tosaka, K. Watanabe, and Y. Sato, Japan. J. Physiol. 8, 41 (1958).
[Crossref]

Tosaka, T.

T. Tomita, T. Tosaka, K. Watanabe, and Y. Sato, Japan. J. Physiol. 8, 41 (1958).
[Crossref]

Wagner, H. G.

H. G. Wagner, E. F. MacNichol, and M. L. Wolbarsht, J. Gen. Physiol. 43, 45 (1960).

Watanabe, K.

T. Tomita, T. Tosaka, K. Watanabe, and Y. Sato, Japan. J. Physiol. 8, 41 (1958).
[Crossref]

Wiesel, T. N.

D. H. Huebel and T. N. Wiesel, J. Physiol. 154, 572 (1960).

Wolbarsht, M. L.

H. G. Wagner, E. F. MacNichol, and M. L. Wolbarsht, J. Gen. Physiol. 43, 45 (1960).

Acta Physiol. Scand. Suppl. (1)

G. Svaetichin, Acta Physiol. Scand. Suppl. 134, 17 (1956).

Am. J. Ophthalmol. (1)

E. F. MacNichol and G. Svaetichin, Am. J. Ophthalmol. 46, 26 (1958).

Doc. Ophthalmol. (1)

W. S. Stiles, Doc. Ophthalmol. 3, 138 (1949).
[Crossref]

J. Gen. Physiol. (2)

H. G. Wagner, E. F. MacNichol, and M. L. Wolbarsht, J. Gen. Physiol. 43, 45 (1960).

R. L. DeValois, J. Gen. Physiol. 43, 115 (1960).
[Crossref]

J. Neurophysiol. (1)

K. Motokawa, T. Oikawa, and K. Tasaki, J. Neurophysiol. 20, 186 (1957).
[PubMed]

J. Opt. Soc. Am. (4)

J. Physiol. (1)

D. H. Huebel and T. N. Wiesel, J. Physiol. 154, 572 (1960).

J. Res. Natl. Bur. Std. U. S. (1)

D. B. Judd, J. Res. Natl. Bur. Std. U. S. 42, 1 (1949).
[Crossref]

Japan. J. Physiol. (1)

T. Tomita, T. Tosaka, K. Watanabe, and Y. Sato, Japan. J. Physiol. 8, 41 (1958).
[Crossref]

Proc. Natl. Acad. Sci. U. S. (1)

For the latest summary of Stiles’ work, see W. S. Stiles, Proc. Natl. Acad. Sci. U. S. 45, 100 (1959).
[Crossref]

Union Intern. Phys. Appl. (Madrid) (1)

Thorough discussion on Stiles’ experiment is found in W. S. Stiles, Union Intern. Phys. Appl. (Madrid) 1, 65 (1953).

Other (4)

Stiles called these “tvi” curves (threshold vs intensity); this change is employed to accord with modern usage of radiance as the appropriate concept for fields having a finite area.

Introduction of this new method is due to Stiles. Formulations to follow are also due to him.

The apparatus actually used for the present experiment had five main channels, I, II, III, IV, and V, for other purposes as well. Here only three of them are shown.

In the present experiment the probability-of-seeing curve is not available for each mechanism. It is assumed instead that one experimentally obtained probability-of-seeing curve can be generalized for all mechanisms. Circles in Fig. 8(a) where a probability of seeing is shown by py, were obtained from subject MI under the same conditions of adaptation as in the present experiment, with a test stimulus of 500 mμ, but with a duration of 200 msec.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Threshold-vs-radiance curve of the eye (solid curve and its hypothetical components (dotted curves). (After Stiles, 1959.)

Fig. 2
Fig. 2

Schematic pair of summation curves. σ defines the summation index.

Fig. 3
Fig. 3

Scheme showing two different situations of stimulation by double flashes.

Fig. 4
Fig. 4

Schematic view of apparatus. See text for notations.

Fig. 5
Fig. 5

Transmittance curve of the yellowish-green color filter used for adapting field.

Fig. 6
Fig. 6

Results from Subject MI: In (a) two spectral sensitivity curves obtained with durations of 100 and 12.5 msec of test flash are shown by solid lines and crosses as the experimental data. Curves in dotted lines are the hypothetical sensitivity curves of mechanisms. Circles are the points calculated from them. In (b) the summation index curves obtained with the corresponding durations are shown.

Fig. 7
Fig. 7

Results from Subject JV: Explanations are the same as for Subject MI in Fig. 6. The summation-index curves were obtained for limited range of λ2.

Fig. 8
Fig. 8

Illustrations showing how the probability-of-seeing curves (a), the summation curves (b), and the sensitivity curves (c) are interrelated. The dotted curve in (a) is calculated from the underlying two probability-of-seeing curves, pr and py. Then log Sr and log Sy obtained from them determine two points in the summation curves at log r=log Sr−log Sy as shown in (b). A calculated point for the sensitivity curve is given by circle in (c) at 580 mμ as an example.

Fig. 9
Fig. 9

Hypothetical log sensitivity curves of mechanisms normalized to 1.0 at maxima.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S 1 = ( threshold radiance of λ 1 in mixture ) ( threshold radiance of λ 1 when only λ 1 is present ) , S 2 = ( threshold radiance of λ 2 in mixture ) ( threshold radiance of λ 2 when only λ 2 is present ) .
log S 1 = log ( r k r Δ N 10 / Δ N 10 ) = log k r + log r , log S 2 = log ( k r Δ N 20 / Δ N 20 ) = log k r .
σ = - log S 1 = - log S 2 = - log k r             for             r = 1.
σ = 0.30 for complete summation , 0.13 σ < 0.30 for partial summation , σ = 0.13 for probability summation , σ < 0.13 for inhibition .
p = 1 - ( 1 - p r ) ( 1 - p y ) .