Abstract

Calculations have been made for the color and luminous efficiency of single phosphors and of blends of such phosphors. In the latter case, all the emission is assumed to come from the phosphors so that the results apply to cathode-ray tubes or to electroluminescent lamps, but not to fluorescent lamps. In these calculations it is considered that (1) real phosphors have somewhat asymmetrical spectral emission distributions of appreciable width, and (2) phosphors are quantum emitters so that the energy output from a red emitter will be lower than that of a blue emitter of equal quantum efficiency. In the case of phosphors to be used in blends, two preferred peak wavelengths at 445 and 570–590 mµ, as well as an unfavorable region at 500–505 mµ, are found. The existence of these special regions can be explained on the basis of the CIE tristimulus functions.

PDF Article

References

  • View by:
  • |
  • |

  1. D. L. MacAdam, J. Opt. Soc. Am. 40, 120 (1950).
  2. H. W. Leverenz, J. Opt. Soc. Am. 30, 309 (1940).
  3. R. T. Ellickson, J. Opt. Soc. Am. 36, 261 (1946).
  4. W. L. Brewer and F. R. Holly, Jr., J. Opt. Soc. Am. 38, 858 (1948).
  5. G. F. J. Garlick, in Handbuch der Physik, edited by S. Flügge (Springer-Verlag, Berlin, 1958), Vol. 26, p. 1; C. C. Klick and J. H. Schulman, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5, p. 17.
  6. S. T. Henderson, Proc. Roy. Soc. (London) A173, 323 (1939); K. H. Butler, J. Electrochem. Soc. 93, 143 (1948).
  7. C. Vlam, Brit. J. Appl. Phys. 5, 443 (1954).
  8. P. W. Randy, D. H. Mash, and S. T. Henderson, Brit. J. Appl. Phys. Suppl. 4, 18 (1955); S. T. Henderson, P. W. Ranby, and M. B. Halstead, in Solid State Physics in Electronics and Telecommunications, edited by M. Desirant and J. L. Michiels (Academic Press Inc., New York, 1960), Vol. 4, p. 714.
  9. D. A. Patterson and C. C. Klick, Phys. Rev. 105, 401 (1957).
  10. M. H. Aven and R. M. Potter, J. Electrochem. Soc. 105, 135 (1958).
  11. W. Lehmann, J. Electrochem. Soc. 110, 754 (1963).
  12. Ev2Eλ and Nv3Eλ.
  13. D. L. Dexter, Phys. Rev. 96, 615 (1954).
  14. D. Curie, Luminescence Cristalline (Dunod Cie, Paris, 1960); Compt. Rend. 246, 404 (1958); 250, 834 (1960); Luminescence in Crystals (John Wiley & Sons, Inc., New York, 1963).
  15. A. E. Hardy, RCA Rev. 8, 554 (1947).
  16. F. A. Kröger, A. Bril, and J. A. M. Dikhoff, Philips Res. Rept. 7, 241 (1952).
  17. It should be noted that the value of 0.36 eV given by Lehmann11 is the separation of the two half-amplitude points. Δv corresponds to the distance from λ0-1 to the corresponding points where the amplitude has fallen to 1/e or 37% of the maximum value. In terms of the usual plot as a function of wavelength, these two wavelengths are given by λ1,20/(1±λ0ΔV) and λ21 = 2λ02Δv/[1- (λ0Δv)2]≃2λ02Δv. Thus for constant Δv, as for the (Zn,Cd)S:Cu family, the bandwidth for the usual type of plot increases as λ0 increases.
  18. H. F. Ivey, Electroluminescence and Related Effects (Academic Press Inc., New York, 1963).
  19. H. F. Ivey, IRE Trans. Component Parts CP4, 114 (1957);Proc. Natl. Electronics Conf. 13, 583 (1957).
  20. A. Bril and H. A. Klasens, Philips Res. Rept. 7, 401 (1952).
  21. A. Bril, in Luminescence of Organic and Inorganic Materials, edited by H. P. Kallmann and G. M. Spruch (John Wiley & Sons, Inc., New York, 1962), p. 479.
  22. G. F. J. Garlick, Brit. J. Appl. Phys. 13, 541 (1962).
  23. J. Tregellas-Williams, J. Electrochem. Soc. 105, 173 (1958).
  24. The effect of the emission wavelength on the efficiency has been included in a paper by C. W. Jerome EJ. Electrochem. Soc. 100, 586 (1953)] concerning the application of phosphors to fluorescent lamps.
  25. The writer is indebted to G. Kemeny, G. R. Hagen, and D. W. Morgan for computer programming.
  26. A. C. Hardy, Handbook of Colorimetry (Technology Press, Cambridge, Massachusetts, 1936); Committee on Colorimetry, Optical Society of America, The Science of Color (The Thomas Y. Crowell Company, New York, 1953).
  27. Only Cu gives electroluminescent phosphors.
  28. Cu can introduce two different emission bands (of equal width) in ZnS. Space does not permit further discussion of this point.
  29. H. W. Leverenz, An Introduction to the Luminescence of Solids (John Wiley & Sons, Inc., New York, 1950), p. 199.

Garlick, G. F. J.

G. F. J. Garlick, in Handbuch der Physik, edited by S. Flügge (Springer-Verlag, Berlin, 1958), Vol. 26, p. 1; C. C. Klick and J. H. Schulman, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5, p. 17.

Leverenz, H. W.

H. W. Leverenz, An Introduction to the Luminescence of Solids (John Wiley & Sons, Inc., New York, 1950), p. 199.

Aven, M. H.

M. H. Aven and R. M. Potter, J. Electrochem. Soc. 105, 135 (1958).

Brewer, W. L.

W. L. Brewer and F. R. Holly, Jr., J. Opt. Soc. Am. 38, 858 (1948).

Bril, A.

F. A. Kröger, A. Bril, and J. A. M. Dikhoff, Philips Res. Rept. 7, 241 (1952).

A. Bril and H. A. Klasens, Philips Res. Rept. 7, 401 (1952).

A. Bril, in Luminescence of Organic and Inorganic Materials, edited by H. P. Kallmann and G. M. Spruch (John Wiley & Sons, Inc., New York, 1962), p. 479.

Curie, D.

D. Curie, Luminescence Cristalline (Dunod Cie, Paris, 1960); Compt. Rend. 246, 404 (1958); 250, 834 (1960); Luminescence in Crystals (John Wiley & Sons, Inc., New York, 1963).

Dexter, D. L.

D. L. Dexter, Phys. Rev. 96, 615 (1954).

Dikhoff, J. A. M.

F. A. Kröger, A. Bril, and J. A. M. Dikhoff, Philips Res. Rept. 7, 241 (1952).

Ellickson, R. T.

R. T. Ellickson, J. Opt. Soc. Am. 36, 261 (1946).

Garlick, G. F. J.

G. F. J. Garlick, Brit. J. Appl. Phys. 13, 541 (1962).

Hagen, G. R.

The writer is indebted to G. Kemeny, G. R. Hagen, and D. W. Morgan for computer programming.

Hardy, A. C.

A. C. Hardy, Handbook of Colorimetry (Technology Press, Cambridge, Massachusetts, 1936); Committee on Colorimetry, Optical Society of America, The Science of Color (The Thomas Y. Crowell Company, New York, 1953).

Hardy, A. E.

A. E. Hardy, RCA Rev. 8, 554 (1947).

Henderson, S. T.

S. T. Henderson, Proc. Roy. Soc. (London) A173, 323 (1939); K. H. Butler, J. Electrochem. Soc. 93, 143 (1948).

P. W. Randy, D. H. Mash, and S. T. Henderson, Brit. J. Appl. Phys. Suppl. 4, 18 (1955); S. T. Henderson, P. W. Ranby, and M. B. Halstead, in Solid State Physics in Electronics and Telecommunications, edited by M. Desirant and J. L. Michiels (Academic Press Inc., New York, 1960), Vol. 4, p. 714.

Holly, Jr., F. R.

W. L. Brewer and F. R. Holly, Jr., J. Opt. Soc. Am. 38, 858 (1948).

Ivey, H. F.

H. F. Ivey, IRE Trans. Component Parts CP4, 114 (1957);Proc. Natl. Electronics Conf. 13, 583 (1957).

H. F. Ivey, Electroluminescence and Related Effects (Academic Press Inc., New York, 1963).

Kemeny, G.

The writer is indebted to G. Kemeny, G. R. Hagen, and D. W. Morgan for computer programming.

Klasens, H. A.

A. Bril and H. A. Klasens, Philips Res. Rept. 7, 401 (1952).

Klick, C. C.

D. A. Patterson and C. C. Klick, Phys. Rev. 105, 401 (1957).

Kröger, F. A.

F. A. Kröger, A. Bril, and J. A. M. Dikhoff, Philips Res. Rept. 7, 241 (1952).

Lehmann, W.

W. Lehmann, J. Electrochem. Soc. 110, 754 (1963).

Leverenz, H. W.

H. W. Leverenz, J. Opt. Soc. Am. 30, 309 (1940).

MacAdam, D. L.

D. L. MacAdam, J. Opt. Soc. Am. 40, 120 (1950).

Mash, D. H.

P. W. Randy, D. H. Mash, and S. T. Henderson, Brit. J. Appl. Phys. Suppl. 4, 18 (1955); S. T. Henderson, P. W. Ranby, and M. B. Halstead, in Solid State Physics in Electronics and Telecommunications, edited by M. Desirant and J. L. Michiels (Academic Press Inc., New York, 1960), Vol. 4, p. 714.

Morgan, D. W.

The writer is indebted to G. Kemeny, G. R. Hagen, and D. W. Morgan for computer programming.

Patterson, D. A.

D. A. Patterson and C. C. Klick, Phys. Rev. 105, 401 (1957).

Potter, R. M.

M. H. Aven and R. M. Potter, J. Electrochem. Soc. 105, 135 (1958).

Randy, P. W.

P. W. Randy, D. H. Mash, and S. T. Henderson, Brit. J. Appl. Phys. Suppl. 4, 18 (1955); S. T. Henderson, P. W. Ranby, and M. B. Halstead, in Solid State Physics in Electronics and Telecommunications, edited by M. Desirant and J. L. Michiels (Academic Press Inc., New York, 1960), Vol. 4, p. 714.

Tregellas-Williams, J.

J. Tregellas-Williams, J. Electrochem. Soc. 105, 173 (1958).

Vlam, C.

C. Vlam, Brit. J. Appl. Phys. 5, 443 (1954).

Other (29)

D. L. MacAdam, J. Opt. Soc. Am. 40, 120 (1950).

H. W. Leverenz, J. Opt. Soc. Am. 30, 309 (1940).

R. T. Ellickson, J. Opt. Soc. Am. 36, 261 (1946).

W. L. Brewer and F. R. Holly, Jr., J. Opt. Soc. Am. 38, 858 (1948).

G. F. J. Garlick, in Handbuch der Physik, edited by S. Flügge (Springer-Verlag, Berlin, 1958), Vol. 26, p. 1; C. C. Klick and J. H. Schulman, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5, p. 17.

S. T. Henderson, Proc. Roy. Soc. (London) A173, 323 (1939); K. H. Butler, J. Electrochem. Soc. 93, 143 (1948).

C. Vlam, Brit. J. Appl. Phys. 5, 443 (1954).

P. W. Randy, D. H. Mash, and S. T. Henderson, Brit. J. Appl. Phys. Suppl. 4, 18 (1955); S. T. Henderson, P. W. Ranby, and M. B. Halstead, in Solid State Physics in Electronics and Telecommunications, edited by M. Desirant and J. L. Michiels (Academic Press Inc., New York, 1960), Vol. 4, p. 714.

D. A. Patterson and C. C. Klick, Phys. Rev. 105, 401 (1957).

M. H. Aven and R. M. Potter, J. Electrochem. Soc. 105, 135 (1958).

W. Lehmann, J. Electrochem. Soc. 110, 754 (1963).

Ev2Eλ and Nv3Eλ.

D. L. Dexter, Phys. Rev. 96, 615 (1954).

D. Curie, Luminescence Cristalline (Dunod Cie, Paris, 1960); Compt. Rend. 246, 404 (1958); 250, 834 (1960); Luminescence in Crystals (John Wiley & Sons, Inc., New York, 1963).

A. E. Hardy, RCA Rev. 8, 554 (1947).

F. A. Kröger, A. Bril, and J. A. M. Dikhoff, Philips Res. Rept. 7, 241 (1952).

It should be noted that the value of 0.36 eV given by Lehmann11 is the separation of the two half-amplitude points. Δv corresponds to the distance from λ0-1 to the corresponding points where the amplitude has fallen to 1/e or 37% of the maximum value. In terms of the usual plot as a function of wavelength, these two wavelengths are given by λ1,20/(1±λ0ΔV) and λ21 = 2λ02Δv/[1- (λ0Δv)2]≃2λ02Δv. Thus for constant Δv, as for the (Zn,Cd)S:Cu family, the bandwidth for the usual type of plot increases as λ0 increases.

H. F. Ivey, Electroluminescence and Related Effects (Academic Press Inc., New York, 1963).

H. F. Ivey, IRE Trans. Component Parts CP4, 114 (1957);Proc. Natl. Electronics Conf. 13, 583 (1957).

A. Bril and H. A. Klasens, Philips Res. Rept. 7, 401 (1952).

A. Bril, in Luminescence of Organic and Inorganic Materials, edited by H. P. Kallmann and G. M. Spruch (John Wiley & Sons, Inc., New York, 1962), p. 479.

G. F. J. Garlick, Brit. J. Appl. Phys. 13, 541 (1962).

J. Tregellas-Williams, J. Electrochem. Soc. 105, 173 (1958).

The effect of the emission wavelength on the efficiency has been included in a paper by C. W. Jerome EJ. Electrochem. Soc. 100, 586 (1953)] concerning the application of phosphors to fluorescent lamps.

The writer is indebted to G. Kemeny, G. R. Hagen, and D. W. Morgan for computer programming.

A. C. Hardy, Handbook of Colorimetry (Technology Press, Cambridge, Massachusetts, 1936); Committee on Colorimetry, Optical Society of America, The Science of Color (The Thomas Y. Crowell Company, New York, 1953).

Only Cu gives electroluminescent phosphors.

Cu can introduce two different emission bands (of equal width) in ZnS. Space does not permit further discussion of this point.

H. W. Leverenz, An Introduction to the Luminescence of Solids (John Wiley & Sons, Inc., New York, 1950), p. 199.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.