Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Computation of the Transfer Function of an Optical System from the Design Data for Rotationally Symmetric Aberrations. Part I. Theory

Not Accessible

Your library or personal account may give you access

Abstract

The transfer function can be determined by convolution of the pupil function over the aperture. The pupil function itself is a function of the design data of the lens system (i.e., refractive indices, radii of curvature, etc.) Of particular importance, both practically and theoretically, is the frequency response on-axis where only rotationally symmetric aberrations are present. The aberration function is obtained from an integration over the ray-trace data and is curve-fitted by Chebyschev interpolation. Unlike the least-squares method, the Chebyschev approach allows a uniform approximation over the interval. This data is substituted into the transfer function which is numerically evaluated by application of very high-order Gauss quadrature theory.

© 1962 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved