Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Ruhge, “A Survey of Solid State Light Amplifiers and Allied Devices,” U. S. Dept. of Commerce, (November, 1959).
  2. H. O. Hook, Optoelectronic Image Processing Panels (to be published).
  3. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill Book Company, Inc., New York, 1950).
  4. A. E. Conrady, Applied Optics and Optical Design (Oxford University Press, New York, 1929), Vol. I.

Conrady, A. E.

A. E. Conrady, Applied Optics and Optical Design (Oxford University Press, New York, 1929), Vol. I.

Hook, H. O.

H. O. Hook, Optoelectronic Image Processing Panels (to be published).

Jenkins, F. A.

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill Book Company, Inc., New York, 1950).

Ruhge, J.

J. Ruhge, “A Survey of Solid State Light Amplifiers and Allied Devices,” U. S. Dept. of Commerce, (November, 1959).

White, H. E.

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill Book Company, Inc., New York, 1950).

Other (4)

J. Ruhge, “A Survey of Solid State Light Amplifiers and Allied Devices,” U. S. Dept. of Commerce, (November, 1959).

H. O. Hook, Optoelectronic Image Processing Panels (to be published).

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill Book Company, Inc., New York, 1950).

A. E. Conrady, Applied Optics and Optical Design (Oxford University Press, New York, 1929), Vol. I.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Paraxial focal length for rays incident in parallel.

Fig. 2
Fig. 2

Trigonometric determination of F(h).

Fig. 3
Fig. 3

Differential equality of flux.

Fig. 4
Fig. 4

F(h) as a function of height above the optical axis (computer results).

Fig. 5
Fig. 5

Relative irradiance plot (computer results).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g = h [ 1 L / F ( h ) ] ;
I 2 π h d h = I ( g ) 2 π g d g .
I ( g ) I = [ 1 1 L / F ( h ) ] { F ( h ) 2 F ( h ) 2 L F ( h ) + L h [ d F ( h ) / d h ] } .
r 1 = 10 , r 2 = 10 , d = 2 , n = 1.000000 , n = 1.523000.
F ( h ) = a h 2 + b h + c ,
a i = [ 2 F ( h i ) F ( h i + 1 ) F ( h i 1 ) 2 ( Δ h ) 2 ] ,
b i = F ( h i ) F ( h i + 1 ) 2 h i [ F ( h i 1 ) F ( h i + 1 ) ] ( 2 h i Δ h ) 2 ( Δ h ) 2 ,
d F ( h i ) / d h i = 2 a i h i + b i .
Appendix A . ( 1 ) sin ϕ = h r 1 ; ( 2 ) sin ϕ = n n sin ϕ ; ( 3 ) θ = ϕ ϕ ; ( 4 ) r s = r sin ϕ sin θ ; ( 5 ) S 2 = s d ; ( 6 ) sin ϕ 2 = r 2 S 2 r 2 sin θ 2 ; ( 7 ) sin ϕ 2 = n n sin ϕ 2 ; ( 8 ) θ 2 = ϕ 2 ϕ 2 + θ 2 ; ( 9 ) r 2 F ( h ) = r 2 sin ϕ 2 sin θ 2 .