Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Koslov and E. O. Fedorova, Optics and Spectroscopy 10, 348 (1961).
  2. H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
    [CrossRef]

1961 (2)

V. P. Koslov and E. O. Fedorova, Optics and Spectroscopy 10, 348 (1961).

H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
[CrossRef]

Babrov, H. J.

Fedorova, E. O.

V. P. Koslov and E. O. Fedorova, Optics and Spectroscopy 10, 348 (1961).

Koslov, V. P.

V. P. Koslov and E. O. Fedorova, Optics and Spectroscopy 10, 348 (1961).

J. Opt. Soc. Am. (1)

Optics and Spectroscopy (1)

V. P. Koslov and E. O. Fedorova, Optics and Spectroscopy 10, 348 (1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

The region of integration for the double integration over the spectral slitwidth and the scan.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

T = λ 1 λ 2 F ( λ ) d λ / λ 1 λ 2 F 0 ( λ ) d λ ,
T = λ 1 λ 2 F ( λ ) F 0 ( λ ) d λ = λ 1 λ 2 τ ( λ ) d λ = λ 1 λ 2 τ ( λ ) d λ .
T m = λ 1 λ 2 d λ λ h λ + h F ( λ ) g ( λ λ ) d λ λ h λ + h F 0 ( λ ) g ( λ λ ) d λ ,
λ h λ + h g ( λ λ ) d λ = λ h λ + h g ( λ λ ) d λ = const 1.
τ ( λ ) = F ( λ ) / F 0 ( λ ) F ( λ ) / F 0 ( λ ) ,
T m = λ 1 λ 2 d λ λ h λ + h τ ( λ ) g ( λ λ ) d λ .
T m = λ 1 h λ 1 τ ( λ ) d λ λ 1 λ + h g ( λ λ ) d λ + λ 1 λ 1 + h τ ( λ ) d λ λ 1 λ + h g ( λ λ ) d λ + λ 1 + h λ 2 h τ ( λ ) d λ λ h λ + h g ( λ λ ) d λ + λ 2 h λ 2 τ ( λ ) d λ λ h λ 2 g ( λ λ ) d λ + λ 2 λ 2 + h τ ( λ ) d λ λ h λ 2 g ( λ λ ) d λ = I 1 + I 2 + I 3 + I 4 + I 5 ,
Δ T = T m T .
Δ T = λ 1 h λ 1 τ ( λ ) d λ λ 1 λ + h g ( λ λ ) d λ λ 1 λ 1 + h τ ( λ ) { 1 λ 1 λ + h g ( λ λ ) d λ } d λ λ 2 h λ 2 τ ( λ ) { 1 λ h λ 2 g ( λ λ ) d λ } d λ + λ 2 λ 2 + h τ ( λ ) d λ λ h λ 2 g ( λ λ ) d λ .
g ( λ λ ) = } 0 for < λ λ h , 1 h 1 h 2 ( λ λ ) for h λ λ 0 , 1 h 1 h 2 ( λ λ ) for 0 λ λ h , 0 for h λ λ ,
Δ T = 1 2 h 2 { λ 1 h λ 1 τ ( λ ) ( λ + h λ 1 ) 2 d λ λ 1 λ 1 + h τ ( λ ) ( λ h λ 1 ) 2 d λ λ 2 h λ 2 τ ( λ ) ( λ + h λ 2 ) 2 d λ + λ 2 λ 2 + h τ ( λ ) ( λ h λ 2 ) 2 d λ } .
0 λ 1 h λ 1 τ ( λ ) ( λ + h λ 1 ) 2 d λ h 3 3 ,
h 3 3 λ 1 λ 1 + h τ ( λ ) ( λ h λ 1 ) 2 d λ 0 ,
h 3 3 λ 2 h λ 2 τ ( λ ) ( λ + h λ 2 ) 2 d λ 0 ,
0 λ 2 λ 2 + h τ ( λ ) ( λ h λ 2 ) 2 d λ h 3 3 .
1 3 h Δ T 1 3 h .
| Δ T / T | h / 3 T .
A = λ 1 λ 2 [ 1 F ( λ ) F 0 ( λ ) ] d λ = ( λ 2 λ 1 ) λ 1 λ 2 τ ( λ ) d λ .
a m ( λ ) = [ F 0 m ( λ ) F m ( λ ) ] / F 0 m ( λ ) = 1 τ m ( λ ) .
A m = λ 1 λ 2 [ 1 τ m ( λ ) ] d λ = ( λ 2 λ 1 ) λ 1 λ 2 τ m ( λ ) d λ .
Δ A = λ 1 λ 2 [ τ m ( λ ) τ ( λ ) ] d λ = ( T m T ) = Δ T .
| Δ A | 1 3 h .
| Δ A / A | h / 3 A .
Δ T = τ ¯ [ λ 1 h , λ 1 ] 2 h 2 λ 1 h λ 1 ( λ + h λ 1 ) 2 d λ τ ¯ [ λ 1 , λ 1 + h ] 2 h 2 λ 1 λ 1 + h ( λ h λ 1 ) 2 d λ τ ¯ [ λ 2 h , λ 2 ] 2 h 2 λ 2 h λ 2 ( λ + h λ 2 ) 2 d λ + τ ¯ [ λ 2 , λ 2 + h ] 2 h 2 λ 2 λ 2 + h ( λ h λ 2 ) 2 d λ = 1 6 h { τ ¯ [ λ 1 , h , λ 1 ] τ ¯ [ λ 1 , λ 1 + h ] + τ ¯ [ λ 2 , λ 2 + h ] τ ¯ [ λ 2 h , λ 2 ] } ,