Abstract

An investigation has been made of the extent to which the relative refractivity of the atmosphere is invariant under changes in pressure and humidity. To achieve the necessary precision a refractometer with double-passed chambers 14.3 m long was designed for use in the photographic region. No fiducial line is employed. The relative refractivity of dry air was found to vary by less than 3 × 10−6 over the region from 3890 to 6440 Å for a change in pressure of 12 atm. The relative refractivity of water vapor at low pressure in the region from 3610 to 6440 Å was found to be

δ˜H2O=0.961646+0.0086062k20.00010547k2+0.00001312k6,

where k is the vacuum wave number in μ−1.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Barrell and J. E. Sears, Phil. Trans. Roy. Soc. (London) A238, 1 (1940).
  2. Karl-Filip Svensson, Arkiv Fysik 16, 361 (1960).
  3. K. B. Newbound, J. Opt. Soc. Am. 39, 835 (1949).
    [Crossref]
  4. See dissertation, K. E. Erickson, the Johns Hopkins University (1961), for more complete details.
  5. V. P. Koronkevich, Optika i Spektroskopiia 1, 85 (1956).
  6. D. H. Rank, G. D. Saksena, and T. K. McCubbin, J. Opt. Soc. Am. 48, 455 (1958).
    [Crossref]
  7. See E. R. Peck, J. Opt. Soc. Am. 38, 1015 (1948).
    [Crossref] [PubMed]
  8. G. H. Dieke, D. Dimmock, and H. M. Crosswhite, J. Opt. Soc. Am. 46, 456 (1956).
    [Crossref]
  9. B. Edlén, J. Opt. Soc. Am. 43, 339 (1953).
    [Crossref]
  10. C. Cuthbertson and M. Cuthbertson, Phil. Trans. Roy. Soc. (London) A213, 16 (1914).
  11. J. Wüst and H. Reindel, Z. physik. Chem. B24, 155 (1934).
  12. For a discussion of other effects see W. F. Brown, Dielectrics, volume 17 of Handbook of Physics (Springer-Verlag, Berlin, 1956).
    [Crossref]

1960 (1)

Karl-Filip Svensson, Arkiv Fysik 16, 361 (1960).

1958 (1)

1956 (2)

1953 (1)

1949 (1)

1948 (1)

1940 (1)

H. Barrell and J. E. Sears, Phil. Trans. Roy. Soc. (London) A238, 1 (1940).

1934 (1)

J. Wüst and H. Reindel, Z. physik. Chem. B24, 155 (1934).

1914 (1)

C. Cuthbertson and M. Cuthbertson, Phil. Trans. Roy. Soc. (London) A213, 16 (1914).

Barrell, H.

H. Barrell and J. E. Sears, Phil. Trans. Roy. Soc. (London) A238, 1 (1940).

Brown, W. F.

For a discussion of other effects see W. F. Brown, Dielectrics, volume 17 of Handbook of Physics (Springer-Verlag, Berlin, 1956).
[Crossref]

Crosswhite, H. M.

Cuthbertson, C.

C. Cuthbertson and M. Cuthbertson, Phil. Trans. Roy. Soc. (London) A213, 16 (1914).

Cuthbertson, M.

C. Cuthbertson and M. Cuthbertson, Phil. Trans. Roy. Soc. (London) A213, 16 (1914).

Dieke, G. H.

Dimmock, D.

Edlén, B.

Erickson, K. E.

See dissertation, K. E. Erickson, the Johns Hopkins University (1961), for more complete details.

Koronkevich, V. P.

V. P. Koronkevich, Optika i Spektroskopiia 1, 85 (1956).

McCubbin, T. K.

Newbound, K. B.

Peck, E. R.

Rank, D. H.

Reindel, H.

J. Wüst and H. Reindel, Z. physik. Chem. B24, 155 (1934).

Saksena, G. D.

Sears, J. E.

H. Barrell and J. E. Sears, Phil. Trans. Roy. Soc. (London) A238, 1 (1940).

Svensson, Karl-Filip

Karl-Filip Svensson, Arkiv Fysik 16, 361 (1960).

Wüst, J.

J. Wüst and H. Reindel, Z. physik. Chem. B24, 155 (1934).

Arkiv Fysik (1)

Karl-Filip Svensson, Arkiv Fysik 16, 361 (1960).

J. Opt. Soc. Am. (5)

Optika i Spektroskopiia (1)

V. P. Koronkevich, Optika i Spektroskopiia 1, 85 (1956).

Phil. Trans. Roy. Soc. (London) (2)

H. Barrell and J. E. Sears, Phil. Trans. Roy. Soc. (London) A238, 1 (1940).

C. Cuthbertson and M. Cuthbertson, Phil. Trans. Roy. Soc. (London) A213, 16 (1914).

Z. physik. Chem. (1)

J. Wüst and H. Reindel, Z. physik. Chem. B24, 155 (1934).

Other (2)

For a discussion of other effects see W. F. Brown, Dielectrics, volume 17 of Handbook of Physics (Springer-Verlag, Berlin, 1956).
[Crossref]

See dissertation, K. E. Erickson, the Johns Hopkins University (1961), for more complete details.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Refractometer. Chambers are of 1-in. copper tubing 14.3 m long.

Fig. 2
Fig. 2

Pair of exposures used in refractivity measurements on air. Change in order of interference = 37186.53 at 3889 Å.

Fig. 3
Fig. 3

Virtual arrangement of refractometer. Beams are shown as passing through all plane reflecting surfaces into the virtual spaces beyond. Beams penetrate beamsplitter at B, B1, B2. Optical center of corner reflector is at P1 and P2.

Fig. 4
Fig. 4

Relative refractivity of water vapor. All values normalized to unity at 4679 Å. (a) Newbound.3 (b) Barrell and Sears.1 (c) Wiist and Reindel11 (steam). (d) C. Cuthbertson and M. Cuthbertson10 (steam). (e) δ ˜ air δ ˜ H 2 O.

Tables (2)

Tables Icon

Table I Relative refractivity of air sample (and standard deviation of the mean).

Tables Icon

Table II Relative refractivity of water vapor (and standard deviation of the mean).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ ˜ H 2 O = 0.961646 + 0.0086062 k 2 0.00010547 k 2 + 0.00001312 k 6 ,
δ ˜ ( k , k 0 ) δ ( k ) / δ ( k 0 )
δ ( k , T , P , ρ ) = δ ˜ ( k , k 0 ) δ ( k 0 , T , P , ρ )
δ ˜ H 2 O = 0.961646 + 0.0086062 k 2 0.00010547 k 4 + 0.00001312 k 6 ,
δ ˜ ( k ) δ ( k ) / ρ ,
δ ( k ) = ρ a δ ¯ a ( k ) + ρ w δ ¯ w ( k ) ,
δ ˜ ( k , k 0 ) ρ w = ρ w [ δ w ( k ) δ a ( k 0 ) ] = δ ¯ w ( k 0 ) δ a ( k 0 ) { 1 + [ 28.8 18 2 δ ¯ w ( k 0 ) δ ¯ a ( k 0 ) ] ρ w ρ a } × [ δ ˜ a ( k , k 0 ) δ ˜ w ( k , k 0 ) ] .
[ δ ˜ ( k , k 0 ) ] / ρ = ( 1.13 m 3 / k g ) [ δ ˜ a ( k , k 0 ) δ ˜ w ( k , k 0 ) ] .