Abstract

When radiographic film is exposed with fluorescent intensifying screens, the spatial x-ray quantum fluctuations are recorded on the film in the form of density fluctuations (“quantum mottle”). The x-ray quantum fluctuations can be regarded as the input and the quantum mottle as the output of the image-forming system. The Wiener spectrum of the quantum mottle has been used to determine the relative modulation transfer function of two radiographic systems.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. This term is now being used by the Kodak Research Laboratories in place of what has been variously called “sine-wave response,” “contrast-transmission function,” etc., in accordance with recommendations formulated in July 1961 by the Sub committee for Image Assessment Problems of the International Commission for Optics.
  2. F. H. Perrin, J. Soc. Motion Picture and Television Engrs. 69, 239 (1960).
  3. J. W. Coltman, J. Opt. Soc. Am. 44, 468 (1954).
    [Crossref]
  4. K. Rossmann and H. E. Seemann, Am. J. Roentgenology 85, 366 (1961).
  5. H. M. Cleare, H. R. Splettstosser, and H. E. Seemann (private communication).
  6. J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
    [Crossref]
  7. R. E. Sturm and R. H. Morgan, Am. J. Roentgenology 62, 617 (1949).
  8. R. C. Jones, J. Opt. Soc. Am. 45, 799 (1955).
    [Crossref]
  9. K. F. Stultz and H. J. Zweig, J. Opt. Soc. Am. 49, 693 (1959).
    [Crossref]
  10. E. C. Doerner and K. Rossmann, “Power spectrum analysis of the granularity of photographic prints and x-ray materials,” presented at the Pittsburgh meeting of the Optical Society of America, Spring1961.
  11. This is not the “intensifying factor” of a screen, which is a term used in radiography.
  12. R. L. Lamberts, J. Opt. Soc. Am. 49, 425 (1959).
    [Crossref]

1961 (1)

K. Rossmann and H. E. Seemann, Am. J. Roentgenology 85, 366 (1961).

1960 (1)

F. H. Perrin, J. Soc. Motion Picture and Television Engrs. 69, 239 (1960).

1959 (2)

1955 (1)

1954 (1)

1949 (1)

R. E. Sturm and R. H. Morgan, Am. J. Roentgenology 62, 617 (1949).

1947 (1)

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[Crossref]

Altar, W.

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[Crossref]

Cleare, H. M.

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann (private communication).

Coltman, J. W.

J. W. Coltman, J. Opt. Soc. Am. 44, 468 (1954).
[Crossref]

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[Crossref]

Doerner, E. C.

E. C. Doerner and K. Rossmann, “Power spectrum analysis of the granularity of photographic prints and x-ray materials,” presented at the Pittsburgh meeting of the Optical Society of America, Spring1961.

Ebbighausen, E. G.

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[Crossref]

Jones, R. C.

Lamberts, R. L.

Morgan, R. H.

R. E. Sturm and R. H. Morgan, Am. J. Roentgenology 62, 617 (1949).

Perrin, F. H.

F. H. Perrin, J. Soc. Motion Picture and Television Engrs. 69, 239 (1960).

Rossmann, K.

K. Rossmann and H. E. Seemann, Am. J. Roentgenology 85, 366 (1961).

E. C. Doerner and K. Rossmann, “Power spectrum analysis of the granularity of photographic prints and x-ray materials,” presented at the Pittsburgh meeting of the Optical Society of America, Spring1961.

Seemann, H. E.

K. Rossmann and H. E. Seemann, Am. J. Roentgenology 85, 366 (1961).

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann (private communication).

Splettstosser, H. R.

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann (private communication).

Stultz, K. F.

Sturm, R. E.

R. E. Sturm and R. H. Morgan, Am. J. Roentgenology 62, 617 (1949).

Zweig, H. J.

Am. J. Roentgenology (2)

K. Rossmann and H. E. Seemann, Am. J. Roentgenology 85, 366 (1961).

R. E. Sturm and R. H. Morgan, Am. J. Roentgenology 62, 617 (1949).

J. Appl. Phys. (1)

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[Crossref]

J. Opt. Soc. Am. (4)

J. Soc. Motion Picture and Television Engrs. (1)

F. H. Perrin, J. Soc. Motion Picture and Television Engrs. 69, 239 (1960).

Other (4)

This term is now being used by the Kodak Research Laboratories in place of what has been variously called “sine-wave response,” “contrast-transmission function,” etc., in accordance with recommendations formulated in July 1961 by the Sub committee for Image Assessment Problems of the International Commission for Optics.

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann (private communication).

E. C. Doerner and K. Rossmann, “Power spectrum analysis of the granularity of photographic prints and x-ray materials,” presented at the Pittsburgh meeting of the Optical Society of America, Spring1961.

This is not the “intensifying factor” of a screen, which is a term used in radiography.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wiener spectra of quantum mottle and grain with net density as a parameter.

Fig. 2
Fig. 2

Wiener spectra of quantum mottle and grain at 0.6 cycles/mm and film gradient as a function of density.

Fig. 3
Fig. 3

Invariance of modulation transfer function with density [see Eq. (5)].

Fig. 4
Fig. 4

Wiener spectra of quantum mottle and grain from a sharp (emulsion) and unsharp (base) system.

Fig. 5
Fig. 5

Ratio of modulation transfer functions of two screen–film systems: screen in contact with base (unsharp), screen in contact with emulsion (sharp).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φ total ( ν ) = Φ mottle ( ν ) + Φ grain ( ν ) ,
Φ mottle ( ν ) = G 2 ( 1 / I ¯ 2 ) Φ I ( ν ) ,
Φ I ( ν ) = g 2 | A # ( ν ) | 2 Φ x ( ν ) ,
A # ( ν ) ~ ( 1 / G ) [ n ¯ x Φ ( ν ) ] 1 2 ,
Φ 1 1 2 G 1 / Φ 2 1 2 G 2 = ( n ¯ x 2 n ¯ x 1 ) 1 2 ,
A # base ( ν ) A # emulsion ( ν ) = G emulsion G base ( Φ base ( ν ) Φ emulsion ( ν ) ) 1 2 .