Abstract

Fixation disparity was measured while the subject fixated a target 51.4 cm away in the median plane. Prism vergence was varied through a range of 20 prism diopters base-in to 20 prism diopters base-out. Subjective measurements were made with a modified haploscope. Photographic, or objective, measurements were made by placing contact lenses with plane mirrors on both eyes of the subject and reflecting light to an oscillographic camera, by using the optical-lever principle. The subjective and objective methods gave results which were in close enough agreement to support the conclusion that the mean primary uniocular visual direction does not vary as the fusional stress is changed. Photographic records made with steady binocular fixation of the target for over 1 min showed that the vergence of the eyes varies by less than 10 min of arc, which is consistent with the concept of Panum’s fusional areas.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Walls, A.M.A. Arch. Ophthalmol. 45, 387 (1951).
    [Crossref] [PubMed]
  2. K. N. Ogle, Researches in Binocular Vision (W. B. Saunders Company, Philadelphia, 1950).
  3. C. H. Judd, Psychol. Rev., Monogr. Suppl. 8, 370 (1907).
    [Crossref]
  4. E. Lau, Z. Sinnesphysiol. 53, 1 (1921).
  5. R. H. Peckham, A.M.A. Arch. Ophthalmol. 12, 562 (1934).
    [Crossref]
  6. B. C. Clark, Am. J. Physiol. 48, 82 (1936).
  7. C. R. Stewart, Ph.D. dissertation, The Ohio State University (1951).
  8. G. Westheimer and A. M. Mitchell, A.M.A. Arch. Ophthalmol. 55, 848 (1956).
    [Crossref] [PubMed]
  9. F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
    [Crossref]
  10. R. W. Ditchburn and B. L. Ginsborg, J. Physiol. (London) 119, 1 (1953).
  11. F. W. Hebbard, Ph.D. Dissertation, University of California (1957).
  12. F. W. Hebbard, Am. J. Optom. and Arch. Am. Acad. Optom. 37, 3 (1960).
    [Crossref]
  13. K. N. Ogle and A. de H. Prangen, A.M.A. Arch. Ophthalmol. 49, 313 (1953).
    [Crossref] [PubMed]
  14. A. M. Mitchell and V. J. Ellerbrock, Am. J. Optom. and Arch. Am. Acad. Optom. 32, 520 (1955).
    [Crossref]
  15. D. B. Carter, Am. J. Optom. and Arch. Am. Acad. Optom. 37, 408 (1960).
    [Crossref]

1960 (2)

F. W. Hebbard, Am. J. Optom. and Arch. Am. Acad. Optom. 37, 3 (1960).
[Crossref]

D. B. Carter, Am. J. Optom. and Arch. Am. Acad. Optom. 37, 408 (1960).
[Crossref]

1956 (1)

G. Westheimer and A. M. Mitchell, A.M.A. Arch. Ophthalmol. 55, 848 (1956).
[Crossref] [PubMed]

1955 (1)

A. M. Mitchell and V. J. Ellerbrock, Am. J. Optom. and Arch. Am. Acad. Optom. 32, 520 (1955).
[Crossref]

1953 (2)

K. N. Ogle and A. de H. Prangen, A.M.A. Arch. Ophthalmol. 49, 313 (1953).
[Crossref] [PubMed]

R. W. Ditchburn and B. L. Ginsborg, J. Physiol. (London) 119, 1 (1953).

1951 (1)

G. L. Walls, A.M.A. Arch. Ophthalmol. 45, 387 (1951).
[Crossref] [PubMed]

1950 (1)

F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
[Crossref]

1936 (1)

B. C. Clark, Am. J. Physiol. 48, 82 (1936).

1934 (1)

R. H. Peckham, A.M.A. Arch. Ophthalmol. 12, 562 (1934).
[Crossref]

1921 (1)

E. Lau, Z. Sinnesphysiol. 53, 1 (1921).

1907 (1)

C. H. Judd, Psychol. Rev., Monogr. Suppl. 8, 370 (1907).
[Crossref]

Carter, D. B.

D. B. Carter, Am. J. Optom. and Arch. Am. Acad. Optom. 37, 408 (1960).
[Crossref]

Clark, B. C.

B. C. Clark, Am. J. Physiol. 48, 82 (1936).

Ditchburn, R. W.

R. W. Ditchburn and B. L. Ginsborg, J. Physiol. (London) 119, 1 (1953).

Ellerbrock, V. J.

A. M. Mitchell and V. J. Ellerbrock, Am. J. Optom. and Arch. Am. Acad. Optom. 32, 520 (1955).
[Crossref]

Ginsborg, B. L.

R. W. Ditchburn and B. L. Ginsborg, J. Physiol. (London) 119, 1 (1953).

Hebbard, F. W.

F. W. Hebbard, Am. J. Optom. and Arch. Am. Acad. Optom. 37, 3 (1960).
[Crossref]

F. W. Hebbard, Ph.D. Dissertation, University of California (1957).

Judd, C. H.

C. H. Judd, Psychol. Rev., Monogr. Suppl. 8, 370 (1907).
[Crossref]

Lau, E.

E. Lau, Z. Sinnesphysiol. 53, 1 (1921).

Mitchell, A. M.

G. Westheimer and A. M. Mitchell, A.M.A. Arch. Ophthalmol. 55, 848 (1956).
[Crossref] [PubMed]

A. M. Mitchell and V. J. Ellerbrock, Am. J. Optom. and Arch. Am. Acad. Optom. 32, 520 (1955).
[Crossref]

Ogle, K. N.

K. N. Ogle and A. de H. Prangen, A.M.A. Arch. Ophthalmol. 49, 313 (1953).
[Crossref] [PubMed]

K. N. Ogle, Researches in Binocular Vision (W. B. Saunders Company, Philadelphia, 1950).

Peckham, R. H.

R. H. Peckham, A.M.A. Arch. Ophthalmol. 12, 562 (1934).
[Crossref]

Prangen, A. de H.

K. N. Ogle and A. de H. Prangen, A.M.A. Arch. Ophthalmol. 49, 313 (1953).
[Crossref] [PubMed]

Ratliff, F.

F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
[Crossref]

Riggs, L. A.

F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
[Crossref]

Stewart, C. R.

C. R. Stewart, Ph.D. dissertation, The Ohio State University (1951).

Walls, G. L.

G. L. Walls, A.M.A. Arch. Ophthalmol. 45, 387 (1951).
[Crossref] [PubMed]

Westheimer, G.

G. Westheimer and A. M. Mitchell, A.M.A. Arch. Ophthalmol. 55, 848 (1956).
[Crossref] [PubMed]

A.M.A. Arch. Ophthalmol. (4)

G. L. Walls, A.M.A. Arch. Ophthalmol. 45, 387 (1951).
[Crossref] [PubMed]

G. Westheimer and A. M. Mitchell, A.M.A. Arch. Ophthalmol. 55, 848 (1956).
[Crossref] [PubMed]

R. H. Peckham, A.M.A. Arch. Ophthalmol. 12, 562 (1934).
[Crossref]

K. N. Ogle and A. de H. Prangen, A.M.A. Arch. Ophthalmol. 49, 313 (1953).
[Crossref] [PubMed]

Am. J. Optom. and Arch. Am. Acad. Optom. (3)

A. M. Mitchell and V. J. Ellerbrock, Am. J. Optom. and Arch. Am. Acad. Optom. 32, 520 (1955).
[Crossref]

D. B. Carter, Am. J. Optom. and Arch. Am. Acad. Optom. 37, 408 (1960).
[Crossref]

F. W. Hebbard, Am. J. Optom. and Arch. Am. Acad. Optom. 37, 3 (1960).
[Crossref]

Am. J. Physiol. (1)

B. C. Clark, Am. J. Physiol. 48, 82 (1936).

J. Exptl. Psychol. (1)

F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
[Crossref]

J. Physiol. (London) (1)

R. W. Ditchburn and B. L. Ginsborg, J. Physiol. (London) 119, 1 (1953).

Psychol. Rev., Monogr. Suppl. (1)

C. H. Judd, Psychol. Rev., Monogr. Suppl. 8, 370 (1907).
[Crossref]

Z. Sinnesphysiol. (1)

E. Lau, Z. Sinnesphysiol. 53, 1 (1921).

Other (3)

K. N. Ogle, Researches in Binocular Vision (W. B. Saunders Company, Philadelphia, 1950).

F. W. Hebbard, Ph.D. Dissertation, University of California (1957).

C. R. Stewart, Ph.D. dissertation, The Ohio State University (1951).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic arrangement of the haploscope used for making the subjective measurements. The left haploscope arm MJ rotated beneath the center of rotation of the left eye; the right haploscope arm MK rotated beneath the center of rotation of the right eye. The fixation target was at T; S and S were the optometer stigmas, which were tiny pinholes illuminated from behind. PN was a lateral carrier for a micrometer, which displaced S Trial lenses could be placed before the left or right eye at lens cells C. The optometer lenses were L and L. The images of S and S were projected along BT and AT by semisilvered mirrors M and M.

Fig. 2
Fig. 2

The target used for both subjective and objective measurements. The dimensions are of its angular subtense to the subject. The target was 5 3 4 in. wide by 7 in. high, and the separation between each of its three horizontal or vertical lines was 1 4 in.

Fig. 3
Fig. 3

Schematic arrangement for photographing the movements of the eyes. See text.

Fig. 4
Fig. 4

Contact lens, showing stalk and mirror.

Fig. 5
Fig. 5

Diagrammatic representation of a photographic record made with base-out prism. During periods A, C, and E, binocular fixation of the target occurred. During period B, fixation occurred with the right eye; during period D with the left eye. Following occlusion of the left eye, eye movements to the phoria position occurred during period M; when the right eye was occluded, it also moved to the phoria position. The complex of eye movements associated with recovery of fusion occurred during period P. Similar movements occurred prior to period E. RC1 and RC2 indicate the uniocular component of fixation disparity for the right eye; LC1 and LC2 show the left eye uniocular component. The latent period after occlusion is NM; after recovery it is OP.

Fig. 6
Fig. 6

A section of an eye movement record made shorter than usual. The vertical arrow indicates 10 min of eye rotation; the horizontal arrow indicates 1 sec of time. Fixation disparity was being measured for the right eye, with 8 prism diopters of prism base-out before the eyes. As the left eye was occluded, its trace disappeared. Here it diverged during occlusion. The small but rapid apparent convergence of the right eye at X is the result of a blink. In addition to the small saccades and slow drifts and waves which occur during fixation, the micronystagmus, averaging about 80 cps, can also be detected in the records. It is not an artifact of the recording method, since the control trace (not shown here) never showed such “vibration.”

Fig. 7
Fig. 7

Method of mounting mirror directly on the eye. The mirror is cemented to a cork wedge, which is cemented to absorbent tissue paper, which adheres to the moist eye.

Fig. 8
Fig. 8

Subjective fixation disparity measurements.

Fig. 9
Fig. 9

Objective fixation disparity measurements. (a) Uniocular component of right eye. (b) Uniocular component of left eye. (c) Sum of uniocular components.

Fig. 10
Fig. 10

Comparison of subjective and objective fixation disparity measurements. The points shown are the means of the subjective or objective measurements for a given amount of prism.

Tables (1)

Tables Icon

Table I Range of vergence during steady fixation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = 2 tan ( 3.5 m ) .