Abstract

Thirty bands of C2D2 have been observed and measured between 1900 and 3300 cm−1. Twenty of these have been resolved well enough to permit extraction of rotational constants. The Δ2F values up to J35 for three Σg ground state bands were averaged and correlated with other data for a more reliable B0 = 0.84794 ± 0.00005 and D0 = 7.85 × 10−7 ± 0.4 × 10−7, where the indicated uncertainties are the probable errors of the coefficients. Better resolution and higher J values have reduced the uncertainty derived from other sources. The l-type doubling constants for ν41 and ν51 have been obtained from resolved Q branches and split P and R branches; they are q4 = 0.00316 and q5 = 0.00314 cm−1.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Allen, L. R. Blaine, and E. K. Plyler, J. Research Natl. Bur. Standards,  56, 279–283 (1956).
    [Crossref]
  2. B. D. Saksena, J. Chem. Phys. 20, 95 (1952).
    [Crossref]
  3. J. Overend and H. W. Thompson, Proc. Roy. Soc. (London) A232, 291–309 (1955).
    [Crossref]
  4. R. M. Talley and A. H. Nielsen, J. Chem. Phys. 22, 2030–2041 (1954).
    [Crossref]
  5. L. Krause and H. L. Welsh, Can. J. Phys. 34, 1431–1435 (1956).
  6. E. K. Plyler and E. D. Tidwell (to be published).
  7. E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Research Natl. Bur. Standards,  55, 183 (1955).
    [Crossref]
  8. J. N. Shearer, T. A. Wiggins, A. H. Guenther, and D. H. Rank, J. Chem. Phys. 25, 724 (1956).
    [Crossref]
  9. E. D. Tidwell, E. K. Plyler, and W. S. Benedict, J. Opt. Soc. Am. 50, 1243 (1960).
    [Crossref]
  10. T. A. Wiggins, E. K. Plyler, and E. D. Tidwell, J. Opt. Soc. Am. (to be published).
  11. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand, Inc., Princeton, New Jersey, 1945), p. 293.

1960 (1)

1956 (3)

J. N. Shearer, T. A. Wiggins, A. H. Guenther, and D. H. Rank, J. Chem. Phys. 25, 724 (1956).
[Crossref]

L. Krause and H. L. Welsh, Can. J. Phys. 34, 1431–1435 (1956).

H. C. Allen, L. R. Blaine, and E. K. Plyler, J. Research Natl. Bur. Standards,  56, 279–283 (1956).
[Crossref]

1955 (2)

J. Overend and H. W. Thompson, Proc. Roy. Soc. (London) A232, 291–309 (1955).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Research Natl. Bur. Standards,  55, 183 (1955).
[Crossref]

1954 (1)

R. M. Talley and A. H. Nielsen, J. Chem. Phys. 22, 2030–2041 (1954).
[Crossref]

1952 (1)

B. D. Saksena, J. Chem. Phys. 20, 95 (1952).
[Crossref]

Allen, H. C.

H. C. Allen, L. R. Blaine, and E. K. Plyler, J. Research Natl. Bur. Standards,  56, 279–283 (1956).
[Crossref]

Benedict, W. S.

Blaine, L. R.

H. C. Allen, L. R. Blaine, and E. K. Plyler, J. Research Natl. Bur. Standards,  56, 279–283 (1956).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Research Natl. Bur. Standards,  55, 183 (1955).
[Crossref]

Guenther, A. H.

J. N. Shearer, T. A. Wiggins, A. H. Guenther, and D. H. Rank, J. Chem. Phys. 25, 724 (1956).
[Crossref]

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand, Inc., Princeton, New Jersey, 1945), p. 293.

Krause, L.

L. Krause and H. L. Welsh, Can. J. Phys. 34, 1431–1435 (1956).

Nielsen, A. H.

R. M. Talley and A. H. Nielsen, J. Chem. Phys. 22, 2030–2041 (1954).
[Crossref]

Overend, J.

J. Overend and H. W. Thompson, Proc. Roy. Soc. (London) A232, 291–309 (1955).
[Crossref]

Plyler, E. K.

E. D. Tidwell, E. K. Plyler, and W. S. Benedict, J. Opt. Soc. Am. 50, 1243 (1960).
[Crossref]

H. C. Allen, L. R. Blaine, and E. K. Plyler, J. Research Natl. Bur. Standards,  56, 279–283 (1956).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Research Natl. Bur. Standards,  55, 183 (1955).
[Crossref]

T. A. Wiggins, E. K. Plyler, and E. D. Tidwell, J. Opt. Soc. Am. (to be published).

E. K. Plyler and E. D. Tidwell (to be published).

Rank, D. H.

J. N. Shearer, T. A. Wiggins, A. H. Guenther, and D. H. Rank, J. Chem. Phys. 25, 724 (1956).
[Crossref]

Saksena, B. D.

B. D. Saksena, J. Chem. Phys. 20, 95 (1952).
[Crossref]

Shearer, J. N.

J. N. Shearer, T. A. Wiggins, A. H. Guenther, and D. H. Rank, J. Chem. Phys. 25, 724 (1956).
[Crossref]

Talley, R. M.

R. M. Talley and A. H. Nielsen, J. Chem. Phys. 22, 2030–2041 (1954).
[Crossref]

Thompson, H. W.

J. Overend and H. W. Thompson, Proc. Roy. Soc. (London) A232, 291–309 (1955).
[Crossref]

Tidwell, E. D.

E. D. Tidwell, E. K. Plyler, and W. S. Benedict, J. Opt. Soc. Am. 50, 1243 (1960).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Research Natl. Bur. Standards,  55, 183 (1955).
[Crossref]

E. K. Plyler and E. D. Tidwell (to be published).

T. A. Wiggins, E. K. Plyler, and E. D. Tidwell, J. Opt. Soc. Am. (to be published).

Welsh, H. L.

L. Krause and H. L. Welsh, Can. J. Phys. 34, 1431–1435 (1956).

Wiggins, T. A.

J. N. Shearer, T. A. Wiggins, A. H. Guenther, and D. H. Rank, J. Chem. Phys. 25, 724 (1956).
[Crossref]

T. A. Wiggins, E. K. Plyler, and E. D. Tidwell, J. Opt. Soc. Am. (to be published).

Can. J. Phys. (1)

L. Krause and H. L. Welsh, Can. J. Phys. 34, 1431–1435 (1956).

J. Chem. Phys. (3)

B. D. Saksena, J. Chem. Phys. 20, 95 (1952).
[Crossref]

R. M. Talley and A. H. Nielsen, J. Chem. Phys. 22, 2030–2041 (1954).
[Crossref]

J. N. Shearer, T. A. Wiggins, A. H. Guenther, and D. H. Rank, J. Chem. Phys. 25, 724 (1956).
[Crossref]

J. Opt. Soc. Am. (1)

J. Research Natl. Bur. Standards (2)

H. C. Allen, L. R. Blaine, and E. K. Plyler, J. Research Natl. Bur. Standards,  56, 279–283 (1956).
[Crossref]

E. K. Plyler, L. R. Blaine, and E. D. Tidwell, J. Research Natl. Bur. Standards,  55, 183 (1955).
[Crossref]

Proc. Roy. Soc. (London) (1)

J. Overend and H. W. Thompson, Proc. Roy. Soc. (London) A232, 291–309 (1955).
[Crossref]

Other (3)

T. A. Wiggins, E. K. Plyler, and E. D. Tidwell, J. Opt. Soc. Am. (to be published).

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand, Inc., Princeton, New Jersey, 1945), p. 293.

E. K. Plyler and E. D. Tidwell (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption of C2D2 from 2390–2510 cm−1. The pressure was 3 mm (Hg), path length 8 m and temperature 21°C. The 10 000 lines/in. grating was double passed.

Fig. 2
Fig. 2

Absorption of C2D2 from 2870–3010 cm−1. The pressure was 30 mm (Hg), path length 12 m and temperature 21°C. Grating was double passed. (A) Q branch of C2HD impurity.

Fig. 3
Fig. 3

A small section of Fig. 2, run 10 times slower and 1 mm pressure; otherwise conditions are the same as Fig. 2.

Tables (14)

Tables Icon

Table I Symmetries and degeneracies of the five fundamentals of C2D27.

Tables Icon

Table II Determination of the v4 fundamental frequency.

Tables Icon

Table III Rotational constants of C2D2.

Tables Icon

Table IIIa Bands of questionable identity.

Tables Icon

Table IIIb Rotational constants of C2D2 in cm−1.

Tables Icon

Table V Progress of B0 and D0 for C2D2.

Tables Icon

Table VI v41 ground state Δ2Fc.

Tables Icon

Table VII ν5 ground state Δ2Fc.

Tables Icon

Table VIII Calculated wave numbers (cm−1) and observed differences of the Σ − Σ band.

Tables Icon

Table IX Calculated wave numbers (cm−1) and observed differences of π − Σ bands.

Tables Icon

Table X Calculated wave numbers (cm−1) and observed differences of Σ − π bands.

Tables Icon

Table XI l-type doubling constants, ν41.

Tables Icon

Table XII l-type doubling constants, v51.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ 2 F ( J ) = R ( J 1 ) P ( J + 1 ) = 4 B ( J + 1 2 ) 8 D ( J + 1 2 ) 3 ,
Q ( J ) = ν 0 + ( B B ) J + ( B B ) J 2 ,
Δ 2 F ( J ) = R ( J ) P ( J ) = 4 B ( J + 1 2 ) 8 D ( J + 1 2 ) 3 ,
Δ ν d c = ( q + q ) m + ( q q ) ( m 2 1 ) ,
q = B d B c ,
q υ = 2 ( α υ P R α υ ) .