Abstract

An experiment has been performed to measure the quadratic Doppler shift, (1υ2/c2)12, predicted by the special theory of relativity. A moving beam of radiating hydrogen atoms with velocities ranging up to 2.8 × 108 cm/sec has been viewed from the incoming and outgoing directions simultaneously. Averaging wavelength measurements of a particular spectral line for the two observations gives a measurement of the quadratic shift. The number (12) in the theoretically predicted exponent can be compared to the experimental results. The latter gives the value of this exponent to be 0.498 ± 0.025. The predominant factor leading to the experimental uncertainty is the width of the spectral lines involved in the measurement.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Farago and L. Janossy, Nuovo cimento 5, 1411 (1957).
    [Crossref]
  2. D. J. Grove and I. C. Fox, Phys. Rev. 90, 378 (1953).
  3. V. P. Zrelov, A. A. Tiapkin, and P. S. Farago, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 384 (1958).
  4. H. E. Ives and G. R. Stilwell, J. Opt. Soc. Am. 28, 215 (1938); J. Opt. Soc. Am. 31, 369 (1941).
    [Crossref]
  5. G. Otting, Physik, Z. 40, 681 (1939).
  6. H. I. Mandelberg, Ph.D. dissertation The Johns Hopkins University, 1960 (unpublished). RIAS Technical Report 60-20 is substantially the same as the dissertation and is available by writing to the RIAS librarian. This report contains many details of the experiment which are not reported here.
  7. S. K. Allison, Rev. Sci. Instr. 19, 291 (1948).
    [Crossref]
  8. D. R. Sweetman, Proc. Roy. Soc. (London) A256, 416 (1960).
    [Crossref]
  9. G. H. Dieke, D. Dimock, and H. M. Crosswhite, J. Opt. Soc. Am. 46, 456 (1956).
    [Crossref]
  10. K. W. Meissner, J. Opt. Soc. Am. 31, 410 (1941).
  11. H. Crosswhite, The Johns Hopkins University Spectroscopic Report No. 13 (1958) (unpublished).

1960 (1)

D. R. Sweetman, Proc. Roy. Soc. (London) A256, 416 (1960).
[Crossref]

1958 (1)

V. P. Zrelov, A. A. Tiapkin, and P. S. Farago, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 384 (1958).

1957 (1)

P. S. Farago and L. Janossy, Nuovo cimento 5, 1411 (1957).
[Crossref]

1956 (1)

1953 (1)

D. J. Grove and I. C. Fox, Phys. Rev. 90, 378 (1953).

1948 (1)

S. K. Allison, Rev. Sci. Instr. 19, 291 (1948).
[Crossref]

1941 (1)

K. W. Meissner, J. Opt. Soc. Am. 31, 410 (1941).

1939 (1)

G. Otting, Physik, Z. 40, 681 (1939).

1938 (1)

Allison, S. K.

S. K. Allison, Rev. Sci. Instr. 19, 291 (1948).
[Crossref]

Crosswhite, H.

H. Crosswhite, The Johns Hopkins University Spectroscopic Report No. 13 (1958) (unpublished).

Crosswhite, H. M.

Dieke, G. H.

Dimock, D.

Farago, P. S.

V. P. Zrelov, A. A. Tiapkin, and P. S. Farago, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 384 (1958).

P. S. Farago and L. Janossy, Nuovo cimento 5, 1411 (1957).
[Crossref]

Fox, I. C.

D. J. Grove and I. C. Fox, Phys. Rev. 90, 378 (1953).

Grove, D. J.

D. J. Grove and I. C. Fox, Phys. Rev. 90, 378 (1953).

Ives, H. E.

Janossy, L.

P. S. Farago and L. Janossy, Nuovo cimento 5, 1411 (1957).
[Crossref]

Mandelberg, H. I.

H. I. Mandelberg, Ph.D. dissertation The Johns Hopkins University, 1960 (unpublished). RIAS Technical Report 60-20 is substantially the same as the dissertation and is available by writing to the RIAS librarian. This report contains many details of the experiment which are not reported here.

Meissner, K. W.

K. W. Meissner, J. Opt. Soc. Am. 31, 410 (1941).

Otting, G.

G. Otting, Physik, Z. 40, 681 (1939).

Stilwell, G. R.

Sweetman, D. R.

D. R. Sweetman, Proc. Roy. Soc. (London) A256, 416 (1960).
[Crossref]

Tiapkin, A. A.

V. P. Zrelov, A. A. Tiapkin, and P. S. Farago, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 384 (1958).

Zrelov, V. P.

V. P. Zrelov, A. A. Tiapkin, and P. S. Farago, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 384 (1958).

J. Exptl. Theoret. Phys. (U.S.S.R.) (1)

V. P. Zrelov, A. A. Tiapkin, and P. S. Farago, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 384 (1958).

J. Opt. Soc. Am. (3)

Nuovo cimento (1)

P. S. Farago and L. Janossy, Nuovo cimento 5, 1411 (1957).
[Crossref]

Phys. Rev. (1)

D. J. Grove and I. C. Fox, Phys. Rev. 90, 378 (1953).

Physik, Z. (1)

G. Otting, Physik, Z. 40, 681 (1939).

Proc. Roy. Soc. (London) (1)

D. R. Sweetman, Proc. Roy. Soc. (London) A256, 416 (1960).
[Crossref]

Rev. Sci. Instr. (1)

S. K. Allison, Rev. Sci. Instr. 19, 291 (1948).
[Crossref]

Other (2)

H. I. Mandelberg, Ph.D. dissertation The Johns Hopkins University, 1960 (unpublished). RIAS Technical Report 60-20 is substantially the same as the dissertation and is available by writing to the RIAS librarian. This report contains many details of the experiment which are not reported here.

H. Crosswhite, The Johns Hopkins University Spectroscopic Report No. 13 (1958) (unpublished).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ion source and acceleration chamber: (3) oxide coated filament, (4) capillary, (6) beam exit aperture, (7) probe, (9) arc block, (11) probe corona shield, (14) anode, (15) accelerating electrode. For all other components, see reference 6.

Fig. 2
Fig. 2

Observation chamber: (20) inner observation chamber, (21) beam entrance tube, (22) mask, (23) “Red” mirror, (24) mask, (25) “Blue” mirror, (26) stopping plate, (27) hydrogen inlet tube, (38) inner chamber window, (46) main window. For other components, see reference 6.

Fig. 3
Fig. 3

Ion beam circuitry.

Fig. 4
Fig. 4

Optical system: (1) 1.5-m Wadsworth spectrograph, (2) 200-micron slit, (3) interferometer plates, (4) 1 mm spacer, (5) temperature controlled interferometer housing, (6) 400-μ slit, (7) monitor photomultiplier, (8) half reflecting mirror, (9) axis correction plate, (10) prism, (11) central masks, (12) main vacuum system window, (13) “red” mirror, (14) “blue” mirror, (L1) 152 mm focal length f/3.5 lens, (L2) 135 mm focal length f/3.5 lens, (Lc) 60 mm focal length f/5.6 lens, (Lp) 90 mm focal length f/6.8 lens.

Fig. 5
Fig. 5

Sample of photographic plate. Reference is at top, beam spectrum at bottom.

Fig. 6
Fig. 6

Results–Relativistic shift as function of first-order Doppler shift and of β. Results of this experiment are shown together with previous results.

Tables (1)

Tables Icon

Table I Calculation of quadratic Doppler shift from data run 15, 68.75 kv, mass 2.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

λ B = λ 0 1 β cos θ ( 1 β 2 ) 1 2 λ 0 ( 1 β cos θ + 1 2 β 2 ) ,
λ R = λ 0 1 + β cos θ ( 1 β 2 ) 1 2 λ 0 ( 1 + β cos θ + 1 2 β 2 ) ,
λ Q 1 2 ( λ B + λ R ) = λ 0 ( 1 + 1 2 β 2 ) ,
2 λ D λ R λ B = 2 λ 0 β cos θ ,
fast ( H 2 + ) + stationary H 2 fast H * + other products ,
fast ( H 3 + ) + stationary H 2 fast H * + other products .
δ λ D / λ D = 1 2 δ V / V .
θ max = ( A / 2 ) ( f p / f c ) m .
λ = ( 2 t C D 2 ) / n .
δ λ relativistic = K λ 0 β 2 ; K = 1 2 .