Abstract

The isotope shift in the 72S1262P12 transition (3776 Å) and the hyperfine-structure separations of Tl203 and Tl205 in the 72S12 state have been determined spectroscopically by atomic beam absorption with the use of a Fabry–Pérot interferometer crossed with a 10-in. diffraction grating. Our results are: 0.0554 ± 0.0012 cm−1 for the isotope shift in the 3776 Å line; −0.0405 ± 0.0013 cm−1 in the 62P12 level; and Δν(72S12)=0.4078±0.0014cm1 and 0.4109 ± 0.0012 cm−1 for the hyperfine-structure separation in Tl203 and Tl205, respectively.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hull and H. H. Stroke, J. Opt. Soc. Am. 49, 1088 (1959).
    [CrossRef]
  2. A. I. Odintsov, Optika i Spektroskopia 9, 137 (1960) [Optics and Spectroscopy 9, 75 (1960)].
  3. N. F. Ramsey, Molecular Beams (Oxford University Press, London, 1956), Chap. II; J. G. King and J. R. Zacharias, Advances in Electronics and Electron Physics, Vol. 8, edited by L. Marton (Academic Press Inc., New York, 1956), p. 1.
    [CrossRef]
  4. G. R. Harrison and G. W. Stroke, J. Opt. Soc. Am. 50, 1153 (1960).
    [CrossRef]
  5. S. Tolansky, High Resolution Spectroscopy (Methuen and Company, London, 1942).
  6. A. Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956).
    [CrossRef]
  7. G. F. Koster, Phys. Rev. 86, 148 (1952).
    [CrossRef]
  8. G. Gould, Phys. Rev. 101, 1828 (1956).
    [CrossRef]
  9. We are grateful to G. F. Koster, of Massachusetts Institute of Technology, Cambridge, Massachusetts for a stimulating discussion.
  10. H. Kopfermann, Nuclear Moments (Academic Press Inc., New York, 1958), p. 177.

1960 (2)

A. I. Odintsov, Optika i Spektroskopia 9, 137 (1960) [Optics and Spectroscopy 9, 75 (1960)].

G. R. Harrison and G. W. Stroke, J. Opt. Soc. Am. 50, 1153 (1960).
[CrossRef]

1959 (1)

1956 (2)

G. Gould, Phys. Rev. 101, 1828 (1956).
[CrossRef]

A. Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956).
[CrossRef]

1952 (1)

G. F. Koster, Phys. Rev. 86, 148 (1952).
[CrossRef]

Gould, G.

G. Gould, Phys. Rev. 101, 1828 (1956).
[CrossRef]

Harrison, G. R.

Hull, R. J.

Kopfermann, H.

H. Kopfermann, Nuclear Moments (Academic Press Inc., New York, 1958), p. 177.

Koster, G. F.

G. F. Koster, Phys. Rev. 86, 148 (1952).
[CrossRef]

We are grateful to G. F. Koster, of Massachusetts Institute of Technology, Cambridge, Massachusetts for a stimulating discussion.

Lurio, A.

A. Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956).
[CrossRef]

Odintsov, A. I.

A. I. Odintsov, Optika i Spektroskopia 9, 137 (1960) [Optics and Spectroscopy 9, 75 (1960)].

Prodell, A. G.

A. Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956).
[CrossRef]

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford University Press, London, 1956), Chap. II; J. G. King and J. R. Zacharias, Advances in Electronics and Electron Physics, Vol. 8, edited by L. Marton (Academic Press Inc., New York, 1956), p. 1.
[CrossRef]

Stroke, G. W.

Stroke, H. H.

Tolansky, S.

S. Tolansky, High Resolution Spectroscopy (Methuen and Company, London, 1942).

J. Opt. Soc. Am. (2)

Optika i Spektroskopia (1)

A. I. Odintsov, Optika i Spektroskopia 9, 137 (1960) [Optics and Spectroscopy 9, 75 (1960)].

Phys. Rev. (3)

A. Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956).
[CrossRef]

G. F. Koster, Phys. Rev. 86, 148 (1952).
[CrossRef]

G. Gould, Phys. Rev. 101, 1828 (1956).
[CrossRef]

Other (4)

We are grateful to G. F. Koster, of Massachusetts Institute of Technology, Cambridge, Massachusetts for a stimulating discussion.

H. Kopfermann, Nuclear Moments (Academic Press Inc., New York, 1958), p. 177.

N. F. Ramsey, Molecular Beams (Oxford University Press, London, 1956), Chap. II; J. G. King and J. R. Zacharias, Advances in Electronics and Electron Physics, Vol. 8, edited by L. Marton (Academic Press Inc., New York, 1956), p. 1.
[CrossRef]

S. Tolansky, High Resolution Spectroscopy (Methuen and Company, London, 1942).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Energy-level diagram of natural thallium for the 6 2 P 1 2, 6 2 P 3 2, and 7 2 S 1 2 states. All intervals are in units of 0.001 cm−1. The lower portion of the figure shows the relative intensities and positions of the components of the 3776 Å line, a, A, b, B, c, C represent the F = 0 → 1, 1 → 1, 1 → 0, transitions, respectively, for Tl203 and Tl205. The values shown in the diagram represent the results of the present work, as well as that of others.2,6,8

Fig. 2
Fig. 2

Experimental arrangement. (Dimensions are in cm.)

Fig. 3
Fig. 3

Spectrum of the 3776 Å line of natural thallium, (a) Spectrogram obtained with grating alone showing the components resolved, (b) Same as (a) but with lamp operated at higher temperature to produce broadened “flat-topped” lines, (c) Spectrogram obtained with the Fabry–Pérot interferometer crossed with the grating, showing varying amounts of absorption in each line. (7.2-cm spacer; oven temperature, 600°C.) (d) Same as (c) showing strong absorption in all the lines. (Oven temperature 680°C.) The Fabry–Pérot pattern center is at the top of (c) and (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Isotope shift in 3776 Å line : 0.0554 ± 0.0012 cm 1 ; Δ ν ( 7 2 S 1 2 ) Tl 203 : 0.4078 ± 0.0014 cm 1 ; Δ ν ( 7 2 S 1 2 ) Tl 205 : 0.4109 ± 0.0012 cm 1 .
0 1 : 0.0514 ± 0.0014 cm 1 , 1 1 : 0.0542 ± 0.0010 cm 1 , 1 0 : 0.0606 ± 0.0010 cm 1 ,
Tl 205 Tl 203 isotope shift in 6 2 P 1 2 level : 0.0405 ± 0.0013 cm 1 .