Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “The Decca navigator system,” Engineering 165, 439 (1949); B. G. Pressey, G. E. Ashwell, and C. S. Fowler, Proc. Inst. Elect. Engrs. 100, 73 (1953).
  2. M. Born and E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. X.
  3. K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 102, 1317 (1956).
    [Crossref]
  4. W. Heitler, The Quantum Theory of Radiation (Oxford Clarendon Press, Oxford, 1954), 3rd ed., Chap. V. 19, p. 193.

1956 (1)

K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 102, 1317 (1956).
[Crossref]

1949 (1)

“The Decca navigator system,” Engineering 165, 439 (1949); B. G. Pressey, G. E. Ashwell, and C. S. Fowler, Proc. Inst. Elect. Engrs. 100, 73 (1953).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. X.

Heitler, W.

W. Heitler, The Quantum Theory of Radiation (Oxford Clarendon Press, Oxford, 1954), 3rd ed., Chap. V. 19, p. 193.

Shimoda, K.

K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 102, 1317 (1956).
[Crossref]

Townes, C. H.

K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 102, 1317 (1956).
[Crossref]

Wang, T. C.

K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 102, 1317 (1956).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. X.

Engineering (1)

“The Decca navigator system,” Engineering 165, 439 (1949); B. G. Pressey, G. E. Ashwell, and C. S. Fowler, Proc. Inst. Elect. Engrs. 100, 73 (1953).

Phys. Rev. (1)

K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 102, 1317 (1956).
[Crossref]

Other (2)

W. Heitler, The Quantum Theory of Radiation (Oxford Clarendon Press, Oxford, 1954), 3rd ed., Chap. V. 19, p. 193.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. X.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V 1 ( t + τ ) V 2 * ( t ) = lim T 1 2 T - T + T V 1 ( t + τ ) V 2 * ( t ) d t
Δ τ Δ ν 1 / ( 4 π ) ,
Δ τ Δ ν ~ 1 / ( 4 π )
C ( t , T , τ ) = V 1 ( t + τ ) V 2 * ( t ) T = 1 2 T t - T t + T V 1 ( t + τ ) V 2 * ( t ) d t ,
V ( t ) = A ( t ) exp [ i ϕ ( t ) - 2 π i ν ¯ t ] ,
C ( t , T , τ ) = A 1 ( t + τ ) A 2 ( t ) exp [ i ψ ( t , τ ) - 2 π i ν ¯ t ] ,
ψ = ϕ ( t + τ ) - ϕ ( t ) .