Abstract

Sixty-four lines in the arc spectrum of cesium have been measured interferometrically by utilizing several different light sources, to obtain, in general, wavelengths with an uncertainty of ±0.001 A, and energy levels with an uncertainty of ±0.001 cm−1. The energy levels of the individual series have been represented by extended Ritz formulas with a root-mean-square deviation of less than 0.004 cm−1. The value of the series limit derived from these formulas is (31 406.450±0.030) cm−1. Eight terms of the 2F series have been represented by a two-parameter polarization formula with a rms deviation of 0.04 cm−1.

The hyperfine components of the 62S12,82S12, and 62P12 levels have been resolved. By making use of the theoretically predicted dipole intensity relations, rough values of the splitting factors in the unresolved 2S and 2D states have been obtained which agree with the values predicted on the basis of the Fermi-Segrè-Goudsmit formula. In the forbidden transitions n2D32,52-62S12, the theoretical quadrupole intensity relations were used to obtain the splitting factors of the n2D32,52 states. These splitting factors differed markedly from those predicted by the Fermi-Segrè-Goudsmit formula.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. W. Meissner, Ann. Physik 65, 378 (1921).
    [Crossref]
  2. K. W. Meissner and W. Weinmann, Ann. Physik 29, 758 (1937).
    [Crossref]
  3. D. Jackson, Proc. Roy. Soc. (London) A147, 500 (1934).
  4. K. W. Meissner and R. L. Barger, J. Opt. Soc. Am. 48, 22 (1958).
    [Crossref]
  5. K. W. Meissner, G. V. Deverall, and G. J. Zissis, J. Opt. Soc. Am. 43, 673 (1953).
    [Crossref]
  6. K. W. Meissner, J. Opt. Soc. Am. 31, 405 (1941).
    [Crossref]
  7. B. Edlén, Proceedings of the Rydberg Centennial Conference, Lund (1954).
  8. P. Risberg, Arkiv Fysik 9, 483 (1955).
  9. K. Bockasten, Arkiv Fysik 10, 567 (1956).
  10. H. E. White and Y. A. Eliason, Phys. Rev. 44, 753 (1933).
    [Crossref]
  11. R. H. Garstang, Proc. Cambridge Phil. Soc. 53, 214 (1957).
    [Crossref]
  12. S. Samburski, Z. Physik 76, 132 (1932).
    [Crossref]
  13. B. Millanczuk, Acta Phys. Polon. 4, 65 (1935).

1958 (1)

1957 (1)

R. H. Garstang, Proc. Cambridge Phil. Soc. 53, 214 (1957).
[Crossref]

1956 (1)

K. Bockasten, Arkiv Fysik 10, 567 (1956).

1955 (1)

P. Risberg, Arkiv Fysik 9, 483 (1955).

1953 (1)

1941 (1)

1937 (1)

K. W. Meissner and W. Weinmann, Ann. Physik 29, 758 (1937).
[Crossref]

1935 (1)

B. Millanczuk, Acta Phys. Polon. 4, 65 (1935).

1934 (1)

D. Jackson, Proc. Roy. Soc. (London) A147, 500 (1934).

1933 (1)

H. E. White and Y. A. Eliason, Phys. Rev. 44, 753 (1933).
[Crossref]

1932 (1)

S. Samburski, Z. Physik 76, 132 (1932).
[Crossref]

1921 (1)

K. W. Meissner, Ann. Physik 65, 378 (1921).
[Crossref]

Barger, R. L.

Bockasten, K.

K. Bockasten, Arkiv Fysik 10, 567 (1956).

Deverall, G. V.

Edlén, B.

B. Edlén, Proceedings of the Rydberg Centennial Conference, Lund (1954).

Eliason, Y. A.

H. E. White and Y. A. Eliason, Phys. Rev. 44, 753 (1933).
[Crossref]

Garstang, R. H.

R. H. Garstang, Proc. Cambridge Phil. Soc. 53, 214 (1957).
[Crossref]

Jackson, D.

D. Jackson, Proc. Roy. Soc. (London) A147, 500 (1934).

Meissner, K. W.

Millanczuk, B.

B. Millanczuk, Acta Phys. Polon. 4, 65 (1935).

Risberg, P.

P. Risberg, Arkiv Fysik 9, 483 (1955).

Samburski, S.

S. Samburski, Z. Physik 76, 132 (1932).
[Crossref]

Weinmann, W.

K. W. Meissner and W. Weinmann, Ann. Physik 29, 758 (1937).
[Crossref]

White, H. E.

H. E. White and Y. A. Eliason, Phys. Rev. 44, 753 (1933).
[Crossref]

Zissis, G. J.

Acta Phys. Polon. (1)

B. Millanczuk, Acta Phys. Polon. 4, 65 (1935).

Ann. Physik (2)

K. W. Meissner, Ann. Physik 65, 378 (1921).
[Crossref]

K. W. Meissner and W. Weinmann, Ann. Physik 29, 758 (1937).
[Crossref]

Arkiv Fysik (2)

P. Risberg, Arkiv Fysik 9, 483 (1955).

K. Bockasten, Arkiv Fysik 10, 567 (1956).

J. Opt. Soc. Am. (3)

Phys. Rev. (1)

H. E. White and Y. A. Eliason, Phys. Rev. 44, 753 (1933).
[Crossref]

Proc. Cambridge Phil. Soc. (1)

R. H. Garstang, Proc. Cambridge Phil. Soc. 53, 214 (1957).
[Crossref]

Proc. Roy. Soc. (London) (1)

D. Jackson, Proc. Roy. Soc. (London) A147, 500 (1934).

Z. Physik (1)

S. Samburski, Z. Physik 76, 132 (1932).
[Crossref]

Other (1)

B. Edlén, Proceedings of the Rydberg Centennial Conference, Lund (1954).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Rare-gas shifts of the n2F–52D transitions. The plotted points represent the shifts of the transitions n2F–52D, in cm−1, as determined by comparing the wavelengths emitted by a Geissler tube containing 2.5 mm Hg of a rare-gas carrier with those same wavelengths as emitted by an electrodeless discharge tube which has no carrier gas. The intervals labeled n=10 and n=11 in the figure represent the total shift between the wavelengths of these two transitions emitted by a helium-filled Geissler tube relative to those same wavelengths emitted by a Geissler tube containing argon as a carrier. These transitions were not observed with an electrodeless discharge tube. The curve has been extrapolated to fit these intervals.

Fig. 2
Fig. 2

Ratio of wave-number correction to free spectral range as a function of λ. Here we have plotted the fraction of an order-number shift, relative to that of λ5460.7532, induced by the phase effects upon reflection from the aluminum surfaces of the interferometer. Each point was obtained from interferometric measurements with two different etalon values of the corresponding line emitted by the same light source. The values of these pairs of etalons are indicated in the figure. The line at 8761 A was measured only with a 55-mm etalon, thereby making it impossible to determine the relative phase change at this point. However, by using the accurately known 62P fine-structure splitting and the Ritz combination principle, one is able to predict the wavelength value that would be measured in the absence of wavelength corrections due to phase effects, and this value was used in conjunction with the measured value to determine the point on the curve.

Fig. 3
Fig. 3

Hyperfine pattern of transition n2S1/2–62P1/2. Here one has used the theoretical intensities of the predicted hyperfine pattern to calculate where the centers of gravity of the observed doublet should lie. As a result of this calculation the difference between the observed doublet splitting and the known splitting of the lower state (0.0391 cm−1) turns out to be equal to +1.33a(n2S1/2).

Tables (7)

Tables Icon

Table I Cesium wavelengths and vacuum wave numbers.

Tables Icon

Table II Energy levels of cesium in cm−1. (Uncertainty of ±0.001 cm−1 unless otherwise indicated.)

Tables Icon

Table III 62P Fine-structure splitting.

Tables Icon

Table IV Hyperfine line splittings.

Tables Icon

Table V Parameters for the extended Ritz formula: En=ER/(nabtnctn2dtn3)2.

Tables Icon

Table VI Deviations of the term values predicted by the polarization formula from the observed term values of 2F.

Tables Icon

Table VII Theoretically and experimentally derived splitting factors.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E n = E - R / ( n - a - b t n - c t n 2 ) 2 ,
T n - R / n 2 = A ϕ ( n , l ) + B ψ ( n , l ) ,
( c . g . ) 1 = ( n 2 S 1 2 - 6 2 P 1 2 , 4 ) + 0 ( 100 ) + 4 a ( n 2 S 1 2 ) ( 71.5 ) ( 171.5 ) , ( c . g . ) 2 = ( n 2 S 1 2 - 6 2 P 1 2 , 3 ) + 0 ( 33.4 ) + 4 a ( n 2 S 1 2 ) ( 100 ) ( 133.4 ) .
I ( F F ) = ( 2 F + 1 ) ( 2 F + 1 ) W ( F J F J ; I 2 ) 2 .