Abstract

A series of triplet objectives have been corrected to the same third-order values and compared by computing the fifth-order aberrations. The calculations show that the most symmetrical solutions have reduced fifth-order coma but have an inward curving, high-order astigmatism.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Berek, Grundlagen der Praktischen Optik (Verlag von Walter de Gruyter & Company, Berlin, 1930), pp. 123–130.
  2. R. E. Stephens, J. Opt. Soc. Am. 38, 1032 (1948).
  3. Vance Carpenter, thesis, University of Rochester (1950).
  4. N. Lessing, J. Opt. Soc. Am. 48, 558 (1958).
  5. F. D. Cruikshank, Rev. optique 35, 5, 292 (1956).
  6. F. D. Cruikshank, Australian J. Phys. 11, 41 (1958).
  7. A. E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1960), Part II, p. 317.
  8. The sign convention used for the aberrations agrees with Conrady. A. E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1957).
  9. Since modern computers use floating-point arithmetic, all object distances may be considered as finite. To represent an infinite object distance, one merely inserts a large object-to-lens distance. For example, t01 can be made 1 × 106. Then for a 20° half-angle, Y¯0=0.364×106.
  10. H. A. Buchdahl, Optical Aberration Coefficients (Oxford University Press, London, 1954).
  11. F. D. Cruikshank and G. A. Hills, J. Opt. Soc. Am. 50, 379 (1960).

1960

F. D. Cruikshank and G. A. Hills, J. Opt. Soc. Am. 50, 379 (1960).

1958

F. D. Cruikshank, Australian J. Phys. 11, 41 (1958).

N. Lessing, J. Opt. Soc. Am. 48, 558 (1958).

1956

F. D. Cruikshank, Rev. optique 35, 5, 292 (1956).

1950

Vance Carpenter, thesis, University of Rochester (1950).

1948

R. E. Stephens, J. Opt. Soc. Am. 38, 1032 (1948).

Berek, M.

M. Berek, Grundlagen der Praktischen Optik (Verlag von Walter de Gruyter & Company, Berlin, 1930), pp. 123–130.

Buchdahl, H. A.

H. A. Buchdahl, Optical Aberration Coefficients (Oxford University Press, London, 1954).

Carpenter, Vance

Vance Carpenter, thesis, University of Rochester (1950).

Conrady, A. E.

The sign convention used for the aberrations agrees with Conrady. A. E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1957).

A. E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1960), Part II, p. 317.

Cruikshank, F. D.

F. D. Cruikshank and G. A. Hills, J. Opt. Soc. Am. 50, 379 (1960).

F. D. Cruikshank, Australian J. Phys. 11, 41 (1958).

F. D. Cruikshank, Rev. optique 35, 5, 292 (1956).

Hills, G. A.

F. D. Cruikshank and G. A. Hills, J. Opt. Soc. Am. 50, 379 (1960).

Lessing, N.

N. Lessing, J. Opt. Soc. Am. 48, 558 (1958).

Stephens, R. E.

R. E. Stephens, J. Opt. Soc. Am. 38, 1032 (1948).

Other

M. Berek, Grundlagen der Praktischen Optik (Verlag von Walter de Gruyter & Company, Berlin, 1930), pp. 123–130.

R. E. Stephens, J. Opt. Soc. Am. 38, 1032 (1948).

Vance Carpenter, thesis, University of Rochester (1950).

N. Lessing, J. Opt. Soc. Am. 48, 558 (1958).

F. D. Cruikshank, Rev. optique 35, 5, 292 (1956).

F. D. Cruikshank, Australian J. Phys. 11, 41 (1958).

A. E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1960), Part II, p. 317.

The sign convention used for the aberrations agrees with Conrady. A. E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1957).

Since modern computers use floating-point arithmetic, all object distances may be considered as finite. To represent an infinite object distance, one merely inserts a large object-to-lens distance. For example, t01 can be made 1 × 106. Then for a 20° half-angle, Y¯0=0.364×106.

H. A. Buchdahl, Optical Aberration Coefficients (Oxford University Press, London, 1954).

F. D. Cruikshank and G. A. Hills, J. Opt. Soc. Am. 50, 379 (1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.