Abstract

The refractive indices of synthetic sapphire (Al2O3) were measured at selected wavelengths and the values of index range from 1.834 at 0.265 μ in the ultraviolet to 1.586 at 5.58 μ in the infrared. A three-term Sellmeier dispersion equation of the form

n2-1=iAiλ2λ2-λt2

was fitted to the experimental data. Dispersive quantities were computed which estimate the optical performance to be expected from sapphire.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. H. Malitson, F. V. Murphy, and Wm. S. Rodney, J. Opt. Soc. Am. 48, 72 (1958).
    [Crossref]
  2. Linde Company, 30 East 42nd Street, New York 17, New York.
  3. Wm. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
    [Crossref]
  4. O. N. Stavroudis and L. E. Sutton, J. Opt. Soc. Am. 51, 368 (1961).
    [Crossref]
  5. L. E. Sutton and O. N. Stavroudis, J. Opt. Soc. Am. 51, 905 (1961).
    [Crossref]
  6. A. R. von Hippel, Dielectric Materials and Applications (J. Wiley & Sons, Inc., New York, 1954), p. 301.
  7. R. W. Kebler, “Optical Properties of Synthetic Sapphire” Linde Company, 30 East 42nd Street, New York 17, New York.
  8. M. A. Jeppesen, J. Opt. Soc. Am. 48, 629 (1958).
    [Crossref]
  9. It is common practice to drop the negative sign before the dispersion coefficient dn/dλ.
  10. G. K. T. Conn and D. G. Avery, Infrared Methods (Academic Press, Inc., New York, 1960).

1961 (2)

1958 (2)

1953 (1)

Wm. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
[Crossref]

Avery, D. G.

G. K. T. Conn and D. G. Avery, Infrared Methods (Academic Press, Inc., New York, 1960).

Conn, G. K. T.

G. K. T. Conn and D. G. Avery, Infrared Methods (Academic Press, Inc., New York, 1960).

Jeppesen, M. A.

Kebler, R. W.

R. W. Kebler, “Optical Properties of Synthetic Sapphire” Linde Company, 30 East 42nd Street, New York 17, New York.

Malitson, I. H.

Murphy, F. V.

Rodney, Wm. S.

I. H. Malitson, F. V. Murphy, and Wm. S. Rodney, J. Opt. Soc. Am. 48, 72 (1958).
[Crossref]

Wm. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
[Crossref]

Spindler, R. J.

Wm. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
[Crossref]

Stavroudis, O. N.

Sutton, L. E.

von Hippel, A. R.

A. R. von Hippel, Dielectric Materials and Applications (J. Wiley & Sons, Inc., New York, 1954), p. 301.

J. Opt. Soc. Am. (4)

J. Research Natl. Bur. Standards (1)

Wm. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
[Crossref]

Other (5)

It is common practice to drop the negative sign before the dispersion coefficient dn/dλ.

G. K. T. Conn and D. G. Avery, Infrared Methods (Academic Press, Inc., New York, 1960).

Linde Company, 30 East 42nd Street, New York 17, New York.

A. R. von Hippel, Dielectric Materials and Applications (J. Wiley & Sons, Inc., New York, 1954), p. 301.

R. W. Kebler, “Optical Properties of Synthetic Sapphire” Linde Company, 30 East 42nd Street, New York 17, New York.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

The refractive index and the relative dispersion of synthetic sapphire (Al2O3) for the ordinary ray n0 at 24°C. Wavelength scale is logarithmically graduated.

Fig. 2
Fig. 2

Common ordinate values are used to indicate chromatic aberration and spectral limit of resolution. Chromatic aberration decreases with increasing values of (1−n)/dn/dλ. For best resolution, the value of (λdn/dλ)−1 should be as small as possible.

Tables (3)

Tables Icon

Table I Constants of the dispersion equation at 24°C.

Tables Icon

Table II The observed and computed indices of refraction of synthetic sapphire for the ordinary ray n0 at 24°C and residuals.

Tables Icon

Table III Computed refractive indices of synthetic sapphire at 24°C (λ=wavelength in μ).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 - 1 = i A i λ 2 λ 2 - λ t 2
n 2 - 1 = A 1 λ 2 λ 2 - λ 1 2 + A 2 λ 2 λ 2 - λ 2 2 + A 3 λ 2 λ 2 - λ 3 2 ,
1 / ν = ( n F - n C ) / ( n D - 1 ) ,