Abstract

It is hypothesized that a steady light in one eye will lower or inhibit the critical rate (CFF) of contralateral intermittent flashes of light in a manner consonant with the effect of an adapting field on the discrimination of single flashes. Luminances spanning a 6-log-unit range were variously combined in two 1.5° fields. Results indicate that there is an inhibitory effect which depends in part on relative luminances: except with very dim stimuli, an adapting light dimmer than a given flicker light reduces CFF somewhat; and CFF decreases progressively as adapting luminance increases. Viewed with bright adapting light, a moderately bright flicker field shows a 10–20% reduction in CFF and a dim flicker light (whose CFF is 8 cps or less) shows a 100% reduction in CFF. However, the data, when plotted in a ΔI/I format, show only partial similarity to curves of steady-field and single-flash luminance discrimination. Moreover, the upper limb in each of the family of binocular CFF-logI curves, in which adapting luminance is the parameter, parallels the monocular curve and may be fitted to a similar exponential equation.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Sherrington, The Integrative Action of the Nervous System (Yale University Press, New Haven, Connecticut, 1923), 7th printing, Lecture X, p. 354.
  2. C. H. Baker and E. A. Bott, Can. J. Psychol. 5, 9 (1951).
    [Crossref] [PubMed]
  3. F. H. Ireland, J. Exptl. Psychol. 40, 282 (1950).
    [Crossref]
  4. F. H. Perrin, J. Opt. Soc. Am. 44, 60 (1954).
    [Crossref] [PubMed]
  5. G. Thomas, Am. J. Psychol. 68, 37 (1955).
    [Crossref] [PubMed]
  6. G. Thomas, Am. J. Psychol. 67, 632 (1954).
    [Crossref] [PubMed]
  7. B. S. Lipkin, J. Opt. Soc. Am. 52, 1296 (1962).
    [Crossref]
  8. Tables of data for all conditions for both subjects are to be found in “Monocular Critical Flicker Fusion as a Function of the Area and Intensity of a Contralateral Steady Light” which may be obtained from University Microfilms Inc., 313 No. First St., Ann Arbor, Michigan, order number 62–92.
  9. C. Berger, Acta Physiol. Scand. 31, 161 (1954).
    [Crossref]
  10. H. Ripps and I. T. Kaplan, J. Exptl. Psychol. 60, 255 (1960).
    [Crossref]
  11. R. J. Lythgoe and K. Tansley, Proc. Roy. Soc. (London) B105, 60 (1929).
  12. F. A. Geldard, J. Gen. Psychol. 7, 185 (1932).
    [Crossref]
  13. C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).
  14. G. A. Fry and S. H. Bartley, J. Exptl. Psychol. 19, 351 (1936).
    [Crossref]
  15. E. G. Heinemann, J. Exptl. Psychol. 50, 89 (1955).
    [Crossref]
  16. A. L. Diamond, J. Exptl. Psychol. 50, 144 (1955).
    [Crossref]
  17. H. Liebowitz, F. A. Mote, and W. R. Thurlow, J. Exptl. Psychol. 46, 453 (1953).
    [Crossref]
  18. M. Alpern, J. Opt. Soc. Am. 43, 648 (1953).
    [Crossref] [PubMed]
  19. C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).
  20. J. R. Smith, J. Gen. Psychol. 14, 318 (1936).
    [Crossref]
  21. Fechner’s paradox refers to a binocular phenomenon, in which a dim light does not add to the apparent brightness of a brighter light in the other eye, but instead diminishes its effectiveness. This was demonstrated by De Silva and Bartley for steady luminances [Brit. J. Psychol. 20, 241 (1930)]. The concept has been extended to mean that the net binocular interaction is an averaging of the two brightnesses.
  22. H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).
  23. D. H. Hubel and T. N. Weisel, J. Physiol. (London) 148, 574 (1959).

1962 (1)

1960 (1)

H. Ripps and I. T. Kaplan, J. Exptl. Psychol. 60, 255 (1960).
[Crossref]

1959 (1)

D. H. Hubel and T. N. Weisel, J. Physiol. (London) 148, 574 (1959).

1957 (1)

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

1955 (3)

G. Thomas, Am. J. Psychol. 68, 37 (1955).
[Crossref] [PubMed]

E. G. Heinemann, J. Exptl. Psychol. 50, 89 (1955).
[Crossref]

A. L. Diamond, J. Exptl. Psychol. 50, 144 (1955).
[Crossref]

1954 (3)

F. H. Perrin, J. Opt. Soc. Am. 44, 60 (1954).
[Crossref] [PubMed]

G. Thomas, Am. J. Psychol. 67, 632 (1954).
[Crossref] [PubMed]

C. Berger, Acta Physiol. Scand. 31, 161 (1954).
[Crossref]

1953 (2)

H. Liebowitz, F. A. Mote, and W. R. Thurlow, J. Exptl. Psychol. 46, 453 (1953).
[Crossref]

M. Alpern, J. Opt. Soc. Am. 43, 648 (1953).
[Crossref] [PubMed]

1951 (1)

C. H. Baker and E. A. Bott, Can. J. Psychol. 5, 9 (1951).
[Crossref] [PubMed]

1950 (1)

F. H. Ireland, J. Exptl. Psychol. 40, 282 (1950).
[Crossref]

1938 (1)

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).

1936 (2)

J. R. Smith, J. Gen. Psychol. 14, 318 (1936).
[Crossref]

G. A. Fry and S. H. Bartley, J. Exptl. Psychol. 19, 351 (1936).
[Crossref]

1932 (1)

F. A. Geldard, J. Gen. Psychol. 7, 185 (1932).
[Crossref]

1931 (1)

C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).

1930 (1)

Fechner’s paradox refers to a binocular phenomenon, in which a dim light does not add to the apparent brightness of a brighter light in the other eye, but instead diminishes its effectiveness. This was demonstrated by De Silva and Bartley for steady luminances [Brit. J. Psychol. 20, 241 (1930)]. The concept has been extended to mean that the net binocular interaction is an averaging of the two brightnesses.

1929 (1)

R. J. Lythgoe and K. Tansley, Proc. Roy. Soc. (London) B105, 60 (1929).

Alpern, M.

Baker, C. H.

C. H. Baker and E. A. Bott, Can. J. Psychol. 5, 9 (1951).
[Crossref] [PubMed]

Bartley, S. H.

G. A. Fry and S. H. Bartley, J. Exptl. Psychol. 19, 351 (1936).
[Crossref]

Berger, C.

C. Berger, Acta Physiol. Scand. 31, 161 (1954).
[Crossref]

Bott, E. A.

C. H. Baker and E. A. Bott, Can. J. Psychol. 5, 9 (1951).
[Crossref] [PubMed]

Diamond, A. L.

A. L. Diamond, J. Exptl. Psychol. 50, 144 (1955).
[Crossref]

Fry, G. A.

G. A. Fry and S. H. Bartley, J. Exptl. Psychol. 19, 351 (1936).
[Crossref]

Geldard, F. A.

F. A. Geldard, J. Gen. Psychol. 7, 185 (1932).
[Crossref]

Graham, C. H.

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).

C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).

Granit, R.

C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).

Hartline, H. K.

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

Heinemann, E. G.

E. G. Heinemann, J. Exptl. Psychol. 50, 89 (1955).
[Crossref]

Hubel, D. H.

D. H. Hubel and T. N. Weisel, J. Physiol. (London) 148, 574 (1959).

Ireland, F. H.

F. H. Ireland, J. Exptl. Psychol. 40, 282 (1950).
[Crossref]

Kaplan, I. T.

H. Ripps and I. T. Kaplan, J. Exptl. Psychol. 60, 255 (1960).
[Crossref]

Kemp, E. H.

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).

Liebowitz, H.

H. Liebowitz, F. A. Mote, and W. R. Thurlow, J. Exptl. Psychol. 46, 453 (1953).
[Crossref]

Lipkin, B. S.

Lythgoe, R. J.

R. J. Lythgoe and K. Tansley, Proc. Roy. Soc. (London) B105, 60 (1929).

Mote, F. A.

H. Liebowitz, F. A. Mote, and W. R. Thurlow, J. Exptl. Psychol. 46, 453 (1953).
[Crossref]

Perrin, F. H.

Ratliff, F.

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

Ripps, H.

H. Ripps and I. T. Kaplan, J. Exptl. Psychol. 60, 255 (1960).
[Crossref]

Sherrington, C. S.

C. S. Sherrington, The Integrative Action of the Nervous System (Yale University Press, New Haven, Connecticut, 1923), 7th printing, Lecture X, p. 354.

Smith, J. R.

J. R. Smith, J. Gen. Psychol. 14, 318 (1936).
[Crossref]

Tansley, K.

R. J. Lythgoe and K. Tansley, Proc. Roy. Soc. (London) B105, 60 (1929).

Thomas, G.

G. Thomas, Am. J. Psychol. 68, 37 (1955).
[Crossref] [PubMed]

G. Thomas, Am. J. Psychol. 67, 632 (1954).
[Crossref] [PubMed]

Thurlow, W. R.

H. Liebowitz, F. A. Mote, and W. R. Thurlow, J. Exptl. Psychol. 46, 453 (1953).
[Crossref]

Weisel, T. N.

D. H. Hubel and T. N. Weisel, J. Physiol. (London) 148, 574 (1959).

Acta Physiol. Scand. (1)

C. Berger, Acta Physiol. Scand. 31, 161 (1954).
[Crossref]

Am. J. Physiol. (1)

C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).

Am. J. Psychol. (2)

G. Thomas, Am. J. Psychol. 68, 37 (1955).
[Crossref] [PubMed]

G. Thomas, Am. J. Psychol. 67, 632 (1954).
[Crossref] [PubMed]

Brit. J. Psychol. (1)

Fechner’s paradox refers to a binocular phenomenon, in which a dim light does not add to the apparent brightness of a brighter light in the other eye, but instead diminishes its effectiveness. This was demonstrated by De Silva and Bartley for steady luminances [Brit. J. Psychol. 20, 241 (1930)]. The concept has been extended to mean that the net binocular interaction is an averaging of the two brightnesses.

Can. J. Psychol. (1)

C. H. Baker and E. A. Bott, Can. J. Psychol. 5, 9 (1951).
[Crossref] [PubMed]

J. Exptl. Psychol. (6)

F. H. Ireland, J. Exptl. Psychol. 40, 282 (1950).
[Crossref]

H. Ripps and I. T. Kaplan, J. Exptl. Psychol. 60, 255 (1960).
[Crossref]

G. A. Fry and S. H. Bartley, J. Exptl. Psychol. 19, 351 (1936).
[Crossref]

E. G. Heinemann, J. Exptl. Psychol. 50, 89 (1955).
[Crossref]

A. L. Diamond, J. Exptl. Psychol. 50, 144 (1955).
[Crossref]

H. Liebowitz, F. A. Mote, and W. R. Thurlow, J. Exptl. Psychol. 46, 453 (1953).
[Crossref]

J. Gen. Physiol. (2)

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

J. Gen. Psychol. (2)

J. R. Smith, J. Gen. Psychol. 14, 318 (1936).
[Crossref]

F. A. Geldard, J. Gen. Psychol. 7, 185 (1932).
[Crossref]

J. Opt. Soc. Am. (3)

J. Physiol. (London) (1)

D. H. Hubel and T. N. Weisel, J. Physiol. (London) 148, 574 (1959).

Proc. Roy. Soc. (London) (1)

R. J. Lythgoe and K. Tansley, Proc. Roy. Soc. (London) B105, 60 (1929).

Other (2)

Tables of data for all conditions for both subjects are to be found in “Monocular Critical Flicker Fusion as a Function of the Area and Intensity of a Contralateral Steady Light” which may be obtained from University Microfilms Inc., 313 No. First St., Ann Arbor, Michigan, order number 62–92.

C. S. Sherrington, The Integrative Action of the Nervous System (Yale University Press, New Haven, Connecticut, 1923), 7th printing, Lecture X, p. 354.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of apparatus. A, lamp; B, beamsplitter; L 1, 2, 3, 4, lens system; E and G, field stops; D, sector disk; C, iris diaphragms; F, filter racks; S, opal-glass screen; M, motor; H, stereoscope hood.

Fig. 2
Fig. 2

Critical rate (CFFf,s) as a function of log luminance in the flickering field (log If) for the 1.5°–1.5° area combination (AfAs). “Monocular” refers to CFF values obtained in the absence of contralateral adapting light. Parameter is adapting luminance in log μL. The 0.03 log μL curve is correctly positioned; all other curves are displaced to the right at 0.2 log unit intervals. The displacement line on the abscissa indicates the 0.0 log μL point for each curve. Data are for subject 1.

Fig. 3
Fig. 3

(A) The least amount of adapting luminance (log Is) which completely masks flicker perception as a function of the flicker luminance (log If). (B) Masking-adapting luminance (log Is) as a function of monocular-critical rate (CFFf). (C) Masking-adapting luminance expressed as a critical rate (Fst) as a function of critical rate of the flicker field (CFFf). See text for explanation. Data for subject 1 and 1.5°–1.5° areas.

Fig. 4
Fig. 4

Ift is the least amount of log flicker luminance which will maintain the monocular-critical rate in the presence of contralateral adapting light. Ift is shown as a function of log adapting luminance (log Is). Parameter is monocular critical rate (CFFf). Data for subject 1 and 1.5°–1.5° areas.

Fig. 5
Fig. 5

Several functions derived from Fig. 4. (A) Least amount of log adapting luminance which requires that the initial luminance in the flicker field be doubled (i.e., log If+0.3) in order to maintain the monocular critical rate as a function of the initial or monocular log flicker luminance (log If). (B) Inhibitory threshold of the adapting light (log Iso) as a function of log If. (C) Δlog If (log Ift−log If), when the adapting and flickering fields are initially equally bright, as a function of the initial luminance in the flicker field (log If). Dotted line indicates the breakpoint in the CFF–log If curve of Fig. 2.

Fig. 6
Fig. 6

The least amount of log flicker luminance which maintains the monocular critical rate in the presence of contralateral adapting light to luminance of the adapting field [log (Ift/Is)] as a function of adapting luminance (log Is). Data are for subject 1 and 1.5°–1.5° areas.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

CFF = 8.9 log I + 17.9 ,
Y = a k m x ,
log I f = 1.79 ( 10 0.012 x )
log I f = 0.013 ( 10 0.28 x ) ,