Abstract

The number of Ge i Ritz standards below 2000 Å has now been increased to approximately 100 lines with estimated uncertainties not exceeding 0.0009 Å, 68 of which have estimated uncertainties of 0.0003 Å. This extension is the end product of a systematic Fabry–Perot interferometric investigation which has extended the former interferometric region of 2019–4685 Å to 12 069 Å. Ninety-five interferometrically determined levels of Ge i are given, 72 of which have been improved by this effort.

Twenty-three lines of Ge ii were also measured interferometrically leading to 20 improved energy levels of this spectrum and to estimated splittings of the ng 2G (n=5, 6, 7) terms. From the improved levels, twelve Ge ii Ritz standards from 999 to 1966 Å have been calculated with estimated uncertainties not exceeding 0.0009 Å. An improved series limit of Ge ii calculated from the nf 2F and ng 2G term series is 128 521.3 cm−1. This value made use of improved levels of this work and as yet unpublished data furnished by Shenstone.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. VanVeld and K. W. Meissner, J. Opt. Soc. Am. 46, 598 (1956).
    [Crossref]
  2. K. L. Andrew and K. W. Meissner, J. Opt. Soc. Am. 48, 31 (1958).
    [Crossref]
  3. Quarterly Report, Foundational Research Projects NOLC Corona (Oct.–Dec.1961).
  4. G. V. Deverall, K. W. Meissner, and G. J. Zissis, Phys. Rev. 95, 1463 (1954).
    [Crossref]
  5. P. G. Wilkinson and K. L. Andrew, J. Opt. Soc. Am. (to be published).
  6. K. L. Andrew and K. W. Meissner, J. Opt. Soc. Am. 49, 146 (1959).
    [Crossref]
  7. Kodak 103aF, I-N, I-M, and I-Z plates were used, the latter two types being hypersensitized according to the recommendations of the manufacturer.
  8. V. Kaufman, J. Opt. Soc. Am. 52, 870 (1962).
  9. S. Emara, J. Research Natl. Bur. Standards 65A, 473 (1961).
    [Crossref]
  10. M. L. Kuder, J. Research Natl. Bur. Standards 65C, 1 (1961).
    [Crossref]
  11. W. F. Meggers and C. J. Humphreys, J. Research Natl. Bur. Standards 18, 543 (1937).
    [Crossref]
  12. K. W. Meissner, J. Opt. Soc. Am. 31, 405 (1941).
    [Crossref]
  13. K. W. Meissner, R. D. VanVeld, and P. G. Wilkinson, J. Opt. Soc. Am. 48, 1001 (1958).
    [Crossref]
  14. K. L. Andrew and K. W. Meissner, J. Opt. Soc. Am. 49, 1086 (1959).
    [Crossref]
  15. C. E. Moore, Atomic Energy Levels (U. S. Government Printing Office, Washington, D. C., 1952), National Bureau of Standards Circ. 467, Vol. II.

1962 (1)

V. Kaufman, J. Opt. Soc. Am. 52, 870 (1962).

1961 (2)

S. Emara, J. Research Natl. Bur. Standards 65A, 473 (1961).
[Crossref]

M. L. Kuder, J. Research Natl. Bur. Standards 65C, 1 (1961).
[Crossref]

1959 (2)

1958 (2)

1956 (1)

1954 (1)

G. V. Deverall, K. W. Meissner, and G. J. Zissis, Phys. Rev. 95, 1463 (1954).
[Crossref]

1941 (1)

1937 (1)

W. F. Meggers and C. J. Humphreys, J. Research Natl. Bur. Standards 18, 543 (1937).
[Crossref]

Andrew, K. L.

Deverall, G. V.

G. V. Deverall, K. W. Meissner, and G. J. Zissis, Phys. Rev. 95, 1463 (1954).
[Crossref]

Emara, S.

S. Emara, J. Research Natl. Bur. Standards 65A, 473 (1961).
[Crossref]

Humphreys, C. J.

W. F. Meggers and C. J. Humphreys, J. Research Natl. Bur. Standards 18, 543 (1937).
[Crossref]

Kaufman, V.

V. Kaufman, J. Opt. Soc. Am. 52, 870 (1962).

Kuder, M. L.

M. L. Kuder, J. Research Natl. Bur. Standards 65C, 1 (1961).
[Crossref]

Meggers, W. F.

W. F. Meggers and C. J. Humphreys, J. Research Natl. Bur. Standards 18, 543 (1937).
[Crossref]

Meissner, K. W.

Moore, C. E.

C. E. Moore, Atomic Energy Levels (U. S. Government Printing Office, Washington, D. C., 1952), National Bureau of Standards Circ. 467, Vol. II.

VanVeld, R. D.

Wilkinson, P. G.

K. W. Meissner, R. D. VanVeld, and P. G. Wilkinson, J. Opt. Soc. Am. 48, 1001 (1958).
[Crossref]

P. G. Wilkinson and K. L. Andrew, J. Opt. Soc. Am. (to be published).

Zissis, G. J.

G. V. Deverall, K. W. Meissner, and G. J. Zissis, Phys. Rev. 95, 1463 (1954).
[Crossref]

J. Opt. Soc. Am. (7)

J. Research Natl. Bur. Standards (3)

S. Emara, J. Research Natl. Bur. Standards 65A, 473 (1961).
[Crossref]

M. L. Kuder, J. Research Natl. Bur. Standards 65C, 1 (1961).
[Crossref]

W. F. Meggers and C. J. Humphreys, J. Research Natl. Bur. Standards 18, 543 (1937).
[Crossref]

Phys. Rev. (1)

G. V. Deverall, K. W. Meissner, and G. J. Zissis, Phys. Rev. 95, 1463 (1954).
[Crossref]

Other (4)

P. G. Wilkinson and K. L. Andrew, J. Opt. Soc. Am. (to be published).

Quarterly Report, Foundational Research Projects NOLC Corona (Oct.–Dec.1961).

Kodak 103aF, I-N, I-M, and I-Z plates were used, the latter two types being hypersensitized according to the recommendations of the manufacturer.

C. E. Moore, Atomic Energy Levels (U. S. Government Printing Office, Washington, D. C., 1952), National Bureau of Standards Circ. 467, Vol. II.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Ge ii array. This is a schematic representation of the usual quadratic array of terms and their combinations. The boxes along the top carry electron configuration labels, the left and right edges representing the range of level values of the corresponding odd terms. (Note that since there are only three levels associated with the 4s 4p3 configuration, this is indicated by three lines.) The boxes along the side represent the corresponding even terms, the upper and lower edges representing the range of level values. The boxes in the body of the table represent transitions which may result from the combination of terms immediately above with those directly to the left. The dashed diagonal lines indicate the region of the spectrum in which the resulting spectral line will lie. Note the break in the scale of the even levels at a value below 40×103 cm−1.

Fig. 2
Fig. 2

Shifts in some of the 6p energy levels of Ge i with respect to the hollow-cathode determined values. Of the nine sources shown all but the hollow cathode are electrodeless discharge lamps. The lamps containing GeBr4+Ne at 46 mm Hg and GeO+Ne at 46 mm Hg were those used throughout the course of this work. The lines connect points which refer to a given source. For some sources, no data were available on level numbers 16 and/or 20, but extrapolations are indicated by the broken lines.

Fig. 3
Fig. 3

Grotrian diagram of the Ge ii doublet 4f2F–5g2G showing the inferred splitting of the 5g2G term.

Tables (11)

Tables Icon

Table I Interferometric measurements in the Ge i spectrum.

Tables Icon

Table II Ge i partial combination array.

Tables Icon

Table III Odd energy levels of Ge i.a

Tables Icon

Table IV Even energy levels of Ge i.a

Tables Icon

Table V Calculated vacuum-ultraviolet Ritz standards.

Tables Icon

Table VI Ge ii—interferometric measurements.

Tables Icon

Table VII Ge ii—partial combination array.

Tables Icon

Table VIII Improved level values of Ge ii.

Tables Icon

Table IX Ge ii—calculated vacuum-ultraviolet Ritz standards.

Tables Icon

Table X A sample series-limit calculation: the 5g–10g 2G series of Ge ii. a=0.0190956a, b=−0.1505910, c=0.2748371; series limit=128 521.335 cm−1, rms=0.013 cm−1.

Tables Icon

Table XI Series-limit values for Ge ii. The body of the table contains the series-limit value obtained from a least-square fit of a two- and three-parameter modified Ritz-term formula (see text) to the term members designated for the centers of gravity of 2F and 2G, respectively. The entry to the right of each series limit gives the root-mean-square deviation of the experimental level values from the corresponding values calculated from the series limit and term formula.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ x ( p x + x ) = λ s ( p s + s ) = 2 t .
T n = 4 R [ n - a - b / ( n - a ) 2 - c / ( n - a ) 4 ] 2 .