Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Information Capacity of Radiation Detectors. II

Not Accessible

Your library or personal account may give you access

Abstract

In Part I of this series of two papers, it was explicitly postulated that the internal noise of the detector was large compared with the noise produced by steady radiation falling on the detector (radiation noise). In this Part II both kinds of noise are taken into account. In a sense, therefore, the present paper includes Part I. But in another sense the scope of the present paper is more restricted because the greater complexity with respect to the sources of noise has made it desirable to use throughout the simplifying assumption that was used only in Sec. 3 of Part I.

The emphasis is given not to the information capacity itself, but to the information efficiency, which is the information capacity divided by the mean power of the beam.

A parameter β is introduced that is a measure of the relative amount of the radiation noise and the internal detector noise when the mean signal power is chosen optimally. When β is zero, only radiation noise is present, and when β is infinite, only the internal noise is present. In Sec. 6 the information efficiency I is derived as a function of the parameter β. The two cases represented by the extreme values of β are discussed in Secs. 4 and 5. In Sec. 4 it is found that with symmetrical signal modulation, the maximum possible information efficiency is equal to the detective quantum efficiency of the detector. When, however, nonsymmetrical modulation is permitted, then the maximum possible information efficiency may be greater and is equal to QD multiplied by log2(1/p), where p is the probability that the gate is open.

The information efficiency in bits per photon is calculated in Sec. 8, for five different kinds of detectors: a multiplier phototube, human vision, photographic films, an image orthicon, and heat detectors. An error was made in Part I in the calculation of the information efficiency of the 1P21 phototube; the error is corrected in Sec. 8.

© 1962 Optical Society of America

Full Article  |  PDF Article
More Like This
Information Capacity of Radiation Detectors

R. Clark Jones
J. Opt. Soc. Am. 50(12) 1166-1170 (1960)

Information Capacity of Radiation Detectors and of Light

R. Clark Jones
Appl. Opt. 2(4) 351-358 (1963)

Information Capacity of a Beam of Light

R. Clark Jones
J. Opt. Soc. Am. 52(5) 493-501 (1962)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (70)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved