Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Hopkins, Wave Theory of Aberrations (Oxford University Press, London, England, 1950).
  2. H. Harting, Z. Instrumentenk 18, 357 (1898).
  3. H. Chretien, Rev. Optique 37, 332 (1959).
  4. E. D. Brown and T. Smith, Phil. Trans. Roy. Soc. London 240, 59, 116 (1957).

1959 (1)

H. Chretien, Rev. Optique 37, 332 (1959).

1957 (1)

E. D. Brown and T. Smith, Phil. Trans. Roy. Soc. London 240, 59, 116 (1957).

1898 (1)

H. Harting, Z. Instrumentenk 18, 357 (1898).

Brown, E. D.

E. D. Brown and T. Smith, Phil. Trans. Roy. Soc. London 240, 59, 116 (1957).

Chretien, H.

H. Chretien, Rev. Optique 37, 332 (1959).

Harting, H.

H. Harting, Z. Instrumentenk 18, 357 (1898).

Hopkins, H. H.

H. H. Hopkins, Wave Theory of Aberrations (Oxford University Press, London, England, 1950).

Smith, T.

E. D. Brown and T. Smith, Phil. Trans. Roy. Soc. London 240, 59, 116 (1957).

Phil. Trans. Roy. Soc. London (1)

E. D. Brown and T. Smith, Phil. Trans. Roy. Soc. London 240, 59, 116 (1957).

Rev. Optique (1)

H. Chretien, Rev. Optique 37, 332 (1959).

Z. Instrumentenk (1)

H. Harting, Z. Instrumentenk 18, 357 (1898).

Other (1)

H. H. Hopkins, Wave Theory of Aberrations (Oxford University Press, London, England, 1950).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Plot of power K1 vs shape σ1 of first lens of combinations of spherically corrected cemented doublets.

Fig. 2
Fig. 2

Plot of coma S2 of doublet vs shape σ1 of first lens for various combinations of spherically corrected doublets.

Fig. 3
Fig. 3

Plot of |K1/K2| vs N2 for quasi-aplanatic cemented doublets.

Fig. 4
Fig. 4

Elements of construction of cemented doublet.

Tables (1)

Tables Icon

Table I Values of −K1/K2 for Clairaut-limit form doublets. Solutions on or below diagonal represent “flint” in front, all others, “crown” in front. All doublets have unit power, stop in contact.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S 1 = Σ K 3 ( F 1 σ 2 + F 2 σ π + F 3 π 2 + F 4 ) = 0 ,
S 2 = Σ K 2 ( F 5 σ + F 6 π ) = 0 ,
σ 2 = β σ 1 - ( β + 1 ) ,             β = K 1 ( N 2 - 1 ) / K 2 ( N 1 - 1 ) .
A 0 + A 1 x + A 2 x 2 + A 3 x 3 + A 4 x 4 + A 5 x 5 = 0 ,
A 0 + A 1 x + A 2 x 2 + A 3 x 3 + A 3 x 4 = 0 ,
K 1 / K 2 = - 1 +
3 = - 4 ( N 1 + 2 ) δ N / N 1 ( N 1 - 1 ) ( 4 N 1 - 1 )
π 1 = - 1.0 ,             π 2 = ( K 1 + 1 ) / ( K 1 - 1 ) .
1 / R 1 = K 1 ( σ 1 + 1 ) / 2 ( N 1 - 1 ) , 1 / R 2 = K 1 ( σ 1 - 1 ) / 2 ( N 1 - 1 ) ,             etc .