Abstract

When radiographic film is exposed with fluorescent intensifying screens, the spatial x-ray quantum fluctuations are recorded on the film as density fluctuations (“quantum mottle”). From the expression for the Wiener spectrum of the mottle, the standard deviation σD mottle of the density fluctuations has been derived in terms of certain screen–film parameters. It is shown that the Selwyn relation σDd=const does not hold for quantum mottle.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
    [CrossRef]
  2. H. M. Cleare, H. R. Splettstosser, and H. E. Seemann, Am. J. Roentgenol. 88, 168 (1962).
  3. K. Rossmann, J. Opt. Soc. Am. 52, 774 (1962).
    [CrossRef]
  4. This term is now being used generally in place of what has been variously called “sine-wave response,” “contrast-transmission function,” etc., in accordance with recommendations formulated in July 1961 by the Subcommittee for Image Assessment Problems of the International Commission for Optics.
  5. R. C. Jones, J. Opt. Soc. Am. 45, 799 (1955).
    [CrossRef]
  6. K. F. Stultz and H. J. Zweig, J. Opt. Soc. Am. 49, 693 (1959).
    [CrossRef]
  7. J. E. Wilkins, J. Opt. Soc. Am. 47, 975 (1957).
    [CrossRef]
  8. H. R. Splettstosser (private communication).

1962 (2)

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann, Am. J. Roentgenol. 88, 168 (1962).

K. Rossmann, J. Opt. Soc. Am. 52, 774 (1962).
[CrossRef]

1959 (1)

1957 (1)

1955 (1)

1947 (1)

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[CrossRef]

Altar, W.

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[CrossRef]

Cleare, H. M.

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann, Am. J. Roentgenol. 88, 168 (1962).

Coltman, J. W.

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[CrossRef]

Ebbighausen, E. G.

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[CrossRef]

Jones, R. C.

Rossmann, K.

Seemann, H. E.

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann, Am. J. Roentgenol. 88, 168 (1962).

Splettstosser, H. R.

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann, Am. J. Roentgenol. 88, 168 (1962).

H. R. Splettstosser (private communication).

Stultz, K. F.

Wilkins, J. E.

Zweig, H. J.

Am. J. Roentgenol. (1)

H. M. Cleare, H. R. Splettstosser, and H. E. Seemann, Am. J. Roentgenol. 88, 168 (1962).

J. Appl. Phys. (1)

J. W. Coltman, E. G. Ebbighausen, and W. Altar, J. Appl. Phys. 18, 530 (1947).
[CrossRef]

J. Opt. Soc. Am. (4)

Other (2)

H. R. Splettstosser (private communication).

This term is now being used generally in place of what has been variously called “sine-wave response,” “contrast-transmission function,” etc., in accordance with recommendations formulated in July 1961 by the Subcommittee for Image Assessment Problems of the International Commission for Optics.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Theoretical and experimental values of σD mottle as a function of scanning aperture diameter; ● experimental, – theoretical.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Φ ( ν ) ~ G 2 ( 1 / n ¯ x ) A # ( ν ) 2 ,
Φ ( ν , d ) = [ A # ( ν , d ) ] 2 Φ ( ν ) ,
A # ( ν , d ) = ( 2 / π ν d ) J 1 ( π ν d ) ,
Φ mottle ~ ( G 2 / n ¯ x ) A # ( ν ) 2 [ ( 2 / π ν d ) J 1 ( π ν d ) ] 2 .
A # ( ν ) = exp ( - 2 π 2 ρ 2 ν 2 ) ,
σ D mottle = K G / d ( n ¯ x ) 1 2 { 1 - e - λ [ I 0 ( λ ) + I 1 ( λ ) ] } 1 2 ,
σ D mottle 0 ( no image formed , no mottle )
σ D mottle K G / d ( n ¯ x ) 1 2 ( perfect imaging , maximum mottle ) .
Δ D mottle = 0.43 G ( σ E / E ¯ ) ,
σ D mottle = 0.49 [ G / d ( n ¯ x ) 1 2 ] ,
σ D mottle = 0.49 [ G / d ( n ¯ x ) 1 2 ] F ( d , ρ ) .
S film = 1 / e n ¯ x ,
σ D mottle = 0.49 ( G / d ) ( e S film ) 1 2 F ( d , ρ ) ,
F ( d , ρ ) { 0 as sharpness decreases , 1 as sharpness increases .