Abstract

Novel circulatory and regenerative multiple-beam interferometry methods making use of optical maser oscillations of extreme monochromaticity based on stimulated emission present interesting possibilities for investigating with high-precision various effects of motion and of fields on the propagation of light. These methods inherently permit increasing considerably the accuracy of the historical relativistic experiments of Michelson, Sagnac, and others, and have also potential applications to studies of other radiation propagation effects in magnetic, electric, and gravitational fields, and in moving refractive media, and to the modulation of coherent radiation. These propagation effects can produce frequency splits of the optical-maser oscillations, and the frequencies of the resulting optical beats are a measure for those effects; frequency measurements can be accomplished with high accuracy by using primary frequency standards, e.g., atomic clocks. Contrary to the many proposed applications of optical masers which are directed towards utilizing the high-spatial coherence of the wave fields, the present subject is thus primarily concerned with the narrow-frequency bandwidths possible with these novel radiation sources. The high accuracies possible with the new interferometric methods described should lead to quantitative results which up to now were either impossible to achieve, or only by experiments on very large scales.

PDF Article

References

  • View by:
  • |
  • |

  1. A. A. Michelson, Phil. Mag. 8, 716 (1904).
  2. G. Sagnac, J. phys. radium 4, 177 (1914).
  3. A. A. Michelson and H. G. Gale, Nature 115, 566 (1925); Astrophys. J. 61, 137, 140 (1925).
  4. F. Harress, Diss. Jena (1911).
  5. B. Pogany, Ann. Physik 80, 217 (1926).
  6. L. Silberstein, J. Opt. Soc. Am. 5, 291 (1921).
  7. M. von Laue, Ann. Physik 62, 448 (1920).
  8. H. Witte, Verhandl. deut. physik. Ges. 16, 143, 754 (1914).
  9. C. Runge, Naturwissenschaften 13, 440 (1925).
  10. See for instance, S. Tolansky, An Introduction to Interferometry (Longman's Green and Company, Inc., New York, 1955) p. 118–127.
  11. R. J. Kennedy, Proc. Natl. Acad. Sci. U. S. 12, 621 (1926).
  12. K. K. Illingworth, Phys. Rev. 30, 692 (1927).
  13. Comite International des Poids et Mesures, Paris (1960).
  14. K. W. Meissner and V. Kaufman, J. Opt. Soc. Am. 49, 434, 942 (1959).
  15. A. L. Schawlow and H. C. Townes, Phys. Rev. 29, 1940 (1958); A. L. Schawlow, Quantum Electronics (Columbia University Press, New York, 1960) p. 553.
  16. A. Javan, W. R. Bennett, Jr., and D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).
  17. A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 96 (1962).
  18. A. T. Forrester, J. Opt. Soc. Am., 51, 253 (1961).
  19. R. C. Mockler, R. E. Behler, and C. S. Snider, I.R.E. Trans. on Instrumentation, 1-9, 120 (1960).
  20. See reference 17, and private communication by Dr. A. L. Schawlow.
  21. Dr. A. L. Schawlow kindly pointed out to the author that also the possibility exists here of applying a fixed magnetic field large enough to separate two Zeeman components by more than the natural linewidth. If this field is arranged parallel to the beam direction, the two circularly polarized components could be excited by the clockwise and counterclockwise beams, respectively.
  22. R. L. Mössbauer, Z. Physik 151, 124 (1958); Naturwissen-schaften 45, 538 (1958). Z. Naturforsch. 14a, 211 (1959).

Ballik, E. A.

A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 96 (1962).

Behler, R. E.

R. C. Mockler, R. E. Behler, and C. S. Snider, I.R.E. Trans. on Instrumentation, 1-9, 120 (1960).

Bennett, Jr., W. R.

A. Javan, W. R. Bennett, Jr., and D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).

Bond, W. L.

A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 96 (1962).

Forrester, A. T.

A. T. Forrester, J. Opt. Soc. Am., 51, 253 (1961).

Gale, H. G.

A. A. Michelson and H. G. Gale, Nature 115, 566 (1925); Astrophys. J. 61, 137, 140 (1925).

Harress, F.

F. Harress, Diss. Jena (1911).

Herriott, D. R.

A. Javan, W. R. Bennett, Jr., and D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).

Illingworth, K. K.

K. K. Illingworth, Phys. Rev. 30, 692 (1927).

Javan, A.

A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 96 (1962).

A. Javan, W. R. Bennett, Jr., and D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).

Kaufman, V.

K. W. Meissner and V. Kaufman, J. Opt. Soc. Am. 49, 434, 942 (1959).

Kennedy, R. J.

R. J. Kennedy, Proc. Natl. Acad. Sci. U. S. 12, 621 (1926).

Meissner, K. W.

K. W. Meissner and V. Kaufman, J. Opt. Soc. Am. 49, 434, 942 (1959).

Michelson, A. A.

A. A. Michelson, Phil. Mag. 8, 716 (1904).

A. A. Michelson and H. G. Gale, Nature 115, 566 (1925); Astrophys. J. 61, 137, 140 (1925).

Mockler, R. C.

R. C. Mockler, R. E. Behler, and C. S. Snider, I.R.E. Trans. on Instrumentation, 1-9, 120 (1960).

Mössbauer, R. L.

R. L. Mössbauer, Z. Physik 151, 124 (1958); Naturwissen-schaften 45, 538 (1958). Z. Naturforsch. 14a, 211 (1959).

Pogany, B.

B. Pogany, Ann. Physik 80, 217 (1926).

Runge, C.

C. Runge, Naturwissenschaften 13, 440 (1925).

Sagnac, G.

G. Sagnac, J. phys. radium 4, 177 (1914).

Schawlow, A. L.

A. L. Schawlow and H. C. Townes, Phys. Rev. 29, 1940 (1958); A. L. Schawlow, Quantum Electronics (Columbia University Press, New York, 1960) p. 553.

Silberstein, L.

L. Silberstein, J. Opt. Soc. Am. 5, 291 (1921).

Snider, C. S.

R. C. Mockler, R. E. Behler, and C. S. Snider, I.R.E. Trans. on Instrumentation, 1-9, 120 (1960).

Townes, H. C.

A. L. Schawlow and H. C. Townes, Phys. Rev. 29, 1940 (1958); A. L. Schawlow, Quantum Electronics (Columbia University Press, New York, 1960) p. 553.

von Laue, M.

M. von Laue, Ann. Physik 62, 448 (1920).

Witte, H.

H. Witte, Verhandl. deut. physik. Ges. 16, 143, 754 (1914).

Other

A. A. Michelson, Phil. Mag. 8, 716 (1904).

G. Sagnac, J. phys. radium 4, 177 (1914).

A. A. Michelson and H. G. Gale, Nature 115, 566 (1925); Astrophys. J. 61, 137, 140 (1925).

F. Harress, Diss. Jena (1911).

B. Pogany, Ann. Physik 80, 217 (1926).

L. Silberstein, J. Opt. Soc. Am. 5, 291 (1921).

M. von Laue, Ann. Physik 62, 448 (1920).

H. Witte, Verhandl. deut. physik. Ges. 16, 143, 754 (1914).

C. Runge, Naturwissenschaften 13, 440 (1925).

See for instance, S. Tolansky, An Introduction to Interferometry (Longman's Green and Company, Inc., New York, 1955) p. 118–127.

R. J. Kennedy, Proc. Natl. Acad. Sci. U. S. 12, 621 (1926).

K. K. Illingworth, Phys. Rev. 30, 692 (1927).

Comite International des Poids et Mesures, Paris (1960).

K. W. Meissner and V. Kaufman, J. Opt. Soc. Am. 49, 434, 942 (1959).

A. L. Schawlow and H. C. Townes, Phys. Rev. 29, 1940 (1958); A. L. Schawlow, Quantum Electronics (Columbia University Press, New York, 1960) p. 553.

A. Javan, W. R. Bennett, Jr., and D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).

A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52, 96 (1962).

A. T. Forrester, J. Opt. Soc. Am., 51, 253 (1961).

R. C. Mockler, R. E. Behler, and C. S. Snider, I.R.E. Trans. on Instrumentation, 1-9, 120 (1960).

See reference 17, and private communication by Dr. A. L. Schawlow.

Dr. A. L. Schawlow kindly pointed out to the author that also the possibility exists here of applying a fixed magnetic field large enough to separate two Zeeman components by more than the natural linewidth. If this field is arranged parallel to the beam direction, the two circularly polarized components could be excited by the clockwise and counterclockwise beams, respectively.

R. L. Mössbauer, Z. Physik 151, 124 (1958); Naturwissen-schaften 45, 538 (1958). Z. Naturforsch. 14a, 211 (1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.