Abstract

With sinusoidal modulation of the radiance of the stimulus as a function of time, amplitude thresholds are measured instead of the repetition-rate thresholds usually obtained in flicker-fusion experiments. Controlling the modulation amplitude independently of the time-average radiance provides an additional degree of freedom, so that the observer’s adaptation level can be held constant while his amplitude sensitivity is measured as a function of the modulation frequency. With an “edgeless” flickering field, these amplitude sensitivity curves show a broad peak of maximum visual response, in the region from 10 to 20 cps at high photopic levels. Such classic relationships as the Ferry-Porter, Talbot-Plateau, and Weber-Fechner laws are derivable from the present results, as descriptions of the behavior of certain parts of the amplitude sensitivity curves as functions of adaptation level.

© 1961 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. H. E. Ives, J. Opt. Soc. Am. 6, 254 (1922); ibid, 343 (1922).
    [Crossref]
  2. H. de Lange, Physica 18, 935 (1952).
    [Crossref]
  3. H. de Lange, thesis, Technical University, Delft, Holland (1957).
  4. H. de Lange, J. Opt. Soc. Am. 48, 777 (1958).
    [Crossref]
  5. R. C. Jones, J. Wash. Acad. Sci. 47, 100 (1957).
  6. F. Veringa, J. Opt. Soc. Am. 48, 500 (1958).
    [Crossref] [PubMed]
  7. L. H. Van der Tweel (private communication).
  8. J. Levinson, Science 130, 919 (1959).
    [Crossref] [PubMed]
  9. J. Levinson, Science 131, 1438 (1960).
    [Crossref] [PubMed]
  10. D. M. Forsyth, J. Opt. Soc. Am. 50, 337 (1960).
    [Crossref] [PubMed]
  11. D. H. Kelly, J. Opt. Soc. Am. 49, 730 (1959).
    [Crossref] [PubMed]
  12. D. H. Kelly, dissertation, University of California, Los Angeles, California (1960).
  13. D. H. Kelly, J. Opt. Soc. Am. 50, 1115 (1960).
    [Crossref] [PubMed]
  14. L. Ronchi and G. T. di Francia, J. Opt. Soc. Am. 47, 639 (1957). See also A. Fiorentini, Atti Fond. Ronchi 10, 54 (1955).
    [Crossref] [PubMed]
  15. D. H. Kelly, Rev. Sci. Instr. 32, 50 (1961).
    [Crossref]
  16. L. H. Van der Tweel, thesis, University of Amsterdam, The Netherlands (1956).
  17. L. Stark and T. N. Cornsweet, Science 127, 588 (1958).
    [Crossref]
  18. L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, J. Opt. Soc. Am. 43, 495 (1953).
    [Crossref] [PubMed]
  19. F. Ratliff and H. K. Hartline, J. Gen. Physiol. 42, 1241 (1959);see also H. K. Hartline, Revs. Modern Phys. 31, 515 (1959).
  20. L. A. Riggs, J. C. Armington, and F. Ratliff, J. Opt. Soc. Am. 44, 315 (1954).
    [Crossref] [PubMed]
  21. F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
    [Crossref]
  22. J. Krauskopf, J. Opt. Soc. Am. 47, 740 (1957).
    [Crossref] [PubMed]
  23. E. M. Lowry, J. Soc. Motion Picture and Television Engrs. 57, 187 (1951).
  24. W. Crozier and E. Wolf, J. Gen. Physiol. 24, 635 (1940–1941).
    [Crossref]

1961 (1)

D. H. Kelly, Rev. Sci. Instr. 32, 50 (1961).
[Crossref]

1960 (3)

1959 (3)

D. H. Kelly, J. Opt. Soc. Am. 49, 730 (1959).
[Crossref] [PubMed]

J. Levinson, Science 130, 919 (1959).
[Crossref] [PubMed]

F. Ratliff and H. K. Hartline, J. Gen. Physiol. 42, 1241 (1959);see also H. K. Hartline, Revs. Modern Phys. 31, 515 (1959).

1958 (3)

1957 (3)

1954 (1)

1953 (1)

1952 (1)

H. de Lange, Physica 18, 935 (1952).
[Crossref]

1951 (1)

E. M. Lowry, J. Soc. Motion Picture and Television Engrs. 57, 187 (1951).

1950 (1)

F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
[Crossref]

1922 (1)

Armington, J. C.

Cornsweet, J. C.

Cornsweet, T. N.

Crozier, W.

W. Crozier and E. Wolf, J. Gen. Physiol. 24, 635 (1940–1941).
[Crossref]

de Lange, H.

H. de Lange, J. Opt. Soc. Am. 48, 777 (1958).
[Crossref]

H. de Lange, Physica 18, 935 (1952).
[Crossref]

H. de Lange, thesis, Technical University, Delft, Holland (1957).

di Francia, G. T.

Forsyth, D. M.

Hartline, H. K.

F. Ratliff and H. K. Hartline, J. Gen. Physiol. 42, 1241 (1959);see also H. K. Hartline, Revs. Modern Phys. 31, 515 (1959).

Ives, H. E.

Jones, R. C.

R. C. Jones, J. Wash. Acad. Sci. 47, 100 (1957).

Kelly, D. H.

D. H. Kelly, Rev. Sci. Instr. 32, 50 (1961).
[Crossref]

D. H. Kelly, J. Opt. Soc. Am. 50, 1115 (1960).
[Crossref] [PubMed]

D. H. Kelly, J. Opt. Soc. Am. 49, 730 (1959).
[Crossref] [PubMed]

D. H. Kelly, dissertation, University of California, Los Angeles, California (1960).

Krauskopf, J.

Levinson, J.

J. Levinson, Science 131, 1438 (1960).
[Crossref] [PubMed]

J. Levinson, Science 130, 919 (1959).
[Crossref] [PubMed]

Lowry, E. M.

E. M. Lowry, J. Soc. Motion Picture and Television Engrs. 57, 187 (1951).

Ratliff, F.

F. Ratliff and H. K. Hartline, J. Gen. Physiol. 42, 1241 (1959);see also H. K. Hartline, Revs. Modern Phys. 31, 515 (1959).

L. A. Riggs, J. C. Armington, and F. Ratliff, J. Opt. Soc. Am. 44, 315 (1954).
[Crossref] [PubMed]

L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, J. Opt. Soc. Am. 43, 495 (1953).
[Crossref] [PubMed]

F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
[Crossref]

Riggs, L. A.

Ronchi, L.

Stark, L.

L. Stark and T. N. Cornsweet, Science 127, 588 (1958).
[Crossref]

Van der Tweel, L. H.

L. H. Van der Tweel, thesis, University of Amsterdam, The Netherlands (1956).

L. H. Van der Tweel (private communication).

Veringa, F.

Wolf, E.

W. Crozier and E. Wolf, J. Gen. Physiol. 24, 635 (1940–1941).
[Crossref]

J. Exptl. Psychol. (1)

F. Ratliff and L. A. Riggs, J. Exptl. Psychol. 40, 687 (1950).
[Crossref]

J. Gen. Physiol. (2)

F. Ratliff and H. K. Hartline, J. Gen. Physiol. 42, 1241 (1959);see also H. K. Hartline, Revs. Modern Phys. 31, 515 (1959).

W. Crozier and E. Wolf, J. Gen. Physiol. 24, 635 (1940–1941).
[Crossref]

J. Opt. Soc. Am. (10)

J. Soc. Motion Picture and Television Engrs. (1)

E. M. Lowry, J. Soc. Motion Picture and Television Engrs. 57, 187 (1951).

J. Wash. Acad. Sci. (1)

R. C. Jones, J. Wash. Acad. Sci. 47, 100 (1957).

Physica (1)

H. de Lange, Physica 18, 935 (1952).
[Crossref]

Rev. Sci. Instr. (1)

D. H. Kelly, Rev. Sci. Instr. 32, 50 (1961).
[Crossref]

Science (3)

L. Stark and T. N. Cornsweet, Science 127, 588 (1958).
[Crossref]

J. Levinson, Science 130, 919 (1959).
[Crossref] [PubMed]

J. Levinson, Science 131, 1438 (1960).
[Crossref] [PubMed]

Other (4)

L. H. Van der Tweel (private communication).

H. de Lange, thesis, Technical University, Delft, Holland (1957).

D. H. Kelly, dissertation, University of California, Los Angeles, California (1960).

L. H. Van der Tweel, thesis, University of Amsterdam, The Netherlands (1956).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Temporal waveform of the stimulus, illustrating modulation parameters and nomenclature used in the text.

Fig. 2
Fig. 2

The Ganzfeld or “edgeless field” spatial pattern used in the present experiments. Measurements of the photographic vignetter located at the field stop of the apparatus are plotted here as transmittance vs half-field angle.

Fig. 3
Fig. 3

Experimental apparatus with observer in position, showing lamp house, beam splitter, motor, speed changer, and spinning Polaroid. A photocell probe connected to the oscilloscope is used for calibration purposes.

Fig. 4
Fig. 4

Relative amplitude sensitivity versus modulation frequency for observer DHK at six adaptation levels; data of Table I, plotted in logarithmic coordinates.

Fig. 5
Fig. 5

Absolute amplitude sensitivity versus modulation frequency for observer DHK at six adaptation levels. Each entry in Table I has been divided by the appropriate adaptation level at the head of its column and plotted in logarithmic coordinates.

Fig. 6
Fig. 6

Relative amplitude sensitivity versus adaptation level for observer DHK at six modulation frequencies; data of Table I plotted in logarithmic coordinates.

Fig. 7
Fig. 7

Spatial contrast sensitivity versus local average luminance, according to Lowry.23 Each branching curve represents a fixed surround luminance. Note similarity to Fig. 6.

Fig. 8
Fig. 8

Threshold frequency versus adaptation level for observer DHK at seven relative amplitudes (i.e., modulation sensitivity is the parameter). Obtained by graphical interpolation of data from Table I, plotted in logarithmic coordinates.

Fig. 9
Fig. 9

Same threshold curves as Fig. 8, but with linear frequency units. Note similarity of first four curves to classic flicker-fusion data.

Tables (1)

Tables Icon

Table I Relative amplitude sensitivity, m−1 white light, observer DHK.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = B ( 1 + m cos ω t ) ,
m = ( f max - f min ) ( / f max + f min )