Abstract

A five-channel ac radiometer is mounted at 45° to the satellite spin axis. In order to obtain radiation measurements independent of satellite temperature, an optical chopping system is used which utilizes the near-zero radiation from space as a reference. These five radiometers have coincident 5°×5° instantaneous fields of view which scan arcs over the earth’s surface as the satellite spins at 10 rpm. The five channels are filtered to respond to different spectral regions in the visual and infrared which are of meteorological significance. A two-channel, wide-angle, unchopped radiometer is mounted parallel to the spin axis and sees a 50° circular field of view which progresses slowly over the earth’s surface with the orbital motion of the satellite. This radiometer uses two thin thermistor disks mounted at the apex of two reflecting cones and coated “black” and “white,” respectively. These radiometers measure solar reflection and total emission of the earth. A third infrared device having a small angular field of view normal to the satellite spin axis produces reference pulses as it crosses the earth’s horizon. This sensor provides information to determine the inclination of the spin axis and the spin rotation rate.

© 1961 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bandeen, R. A. Hanel, J. Licht, R. A. Stampfl, and W. G. Stroud, presented at the AMS Meeting, January, 1961, New York (to be published).
  2. R. DeWaard and E. M. Wormser, Proc. Inst. Radio Engrs. 47, 1508 (1959).
  3. R. DeWaard and E. M. Wormser, Commerce Department OTS Publication PB 151767.
  4. U. S. Patents2,983,888and 2,963, 674.
  5. R. A. Hanel, Jet Propulsion 31, 246 (1961).
  6. F. S. Johnson, J. Meteorol. 11, 431 (1954).
    [Crossref]
  7. R. G. Schmitt and R. C. Hirt, J. Polymer Sci. (to be published).
  8. C. D. Reid and E. C. McAlister, J. Opt. Soc. Am. 49, 78 (1959).
    [Crossref]

1961 (1)

R. A. Hanel, Jet Propulsion 31, 246 (1961).

1959 (2)

R. DeWaard and E. M. Wormser, Proc. Inst. Radio Engrs. 47, 1508 (1959).

C. D. Reid and E. C. McAlister, J. Opt. Soc. Am. 49, 78 (1959).
[Crossref]

1954 (1)

F. S. Johnson, J. Meteorol. 11, 431 (1954).
[Crossref]

Bandeen, W. R.

W. R. Bandeen, R. A. Hanel, J. Licht, R. A. Stampfl, and W. G. Stroud, presented at the AMS Meeting, January, 1961, New York (to be published).

DeWaard, R.

R. DeWaard and E. M. Wormser, Proc. Inst. Radio Engrs. 47, 1508 (1959).

R. DeWaard and E. M. Wormser, Commerce Department OTS Publication PB 151767.

Hanel, R. A.

R. A. Hanel, Jet Propulsion 31, 246 (1961).

W. R. Bandeen, R. A. Hanel, J. Licht, R. A. Stampfl, and W. G. Stroud, presented at the AMS Meeting, January, 1961, New York (to be published).

Hirt, R. C.

R. G. Schmitt and R. C. Hirt, J. Polymer Sci. (to be published).

Johnson, F. S.

F. S. Johnson, J. Meteorol. 11, 431 (1954).
[Crossref]

Licht, J.

W. R. Bandeen, R. A. Hanel, J. Licht, R. A. Stampfl, and W. G. Stroud, presented at the AMS Meeting, January, 1961, New York (to be published).

McAlister, E. C.

Reid, C. D.

Schmitt, R. G.

R. G. Schmitt and R. C. Hirt, J. Polymer Sci. (to be published).

Stampfl, R. A.

W. R. Bandeen, R. A. Hanel, J. Licht, R. A. Stampfl, and W. G. Stroud, presented at the AMS Meeting, January, 1961, New York (to be published).

Stroud, W. G.

W. R. Bandeen, R. A. Hanel, J. Licht, R. A. Stampfl, and W. G. Stroud, presented at the AMS Meeting, January, 1961, New York (to be published).

Wormser, E. M.

R. DeWaard and E. M. Wormser, Proc. Inst. Radio Engrs. 47, 1508 (1959).

R. DeWaard and E. M. Wormser, Commerce Department OTS Publication PB 151767.

J. Meteorol. (1)

F. S. Johnson, J. Meteorol. 11, 431 (1954).
[Crossref]

J. Opt. Soc. Am. (1)

Jet Propulsion (1)

R. A. Hanel, Jet Propulsion 31, 246 (1961).

Proc. Inst. Radio Engrs. (1)

R. DeWaard and E. M. Wormser, Proc. Inst. Radio Engrs. 47, 1508 (1959).

Other (4)

R. DeWaard and E. M. Wormser, Commerce Department OTS Publication PB 151767.

U. S. Patents2,983,888and 2,963, 674.

W. R. Bandeen, R. A. Hanel, J. Licht, R. A. Stampfl, and W. G. Stroud, presented at the AMS Meeting, January, 1961, New York (to be published).

R. G. Schmitt and R. C. Hirt, J. Polymer Sci. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Location and axial orientation of radiometers in satellite.

Fig. 2
Fig. 2

Cross section of one optical channel in five-channel radiometer.

Fig. 3
Fig. 3

Complete five-channel small-field radiometer. Weight 4 1 2 lb; power 1 w.

Fig. 4
Fig. 4

Typical lens-detector cell. Filter isolates desired spectral region. Germanium lens doublet and immersion lens images 5°×5° field on detector.

Fig. 5
Fig. 5

Angular field of view of typical channel in five-channel radiometer.

Fig. 6
Fig. 6

Over-all spectral transmittance of optical elements in the five radiometer channels.

Fig. 7
Fig. 7

Cross section of chopper-bearing assembly.

Fig. 8
Fig. 8

Simplified circuit of high-gain amplifier.

Fig. 9
Fig. 9

Frequency response of amplifier peaking at 44-cps chopping frequency.

Fig. 10
Fig. 10

Total channel output vs radiometer temperature.

Fig. 11
Fig. 11

Schematic section of wide-field radiometer.

Fig. 12
Fig. 12

Two-channel wide-field radiometer without housing cover.

Fig. 13
Fig. 13

Spectral reflectance of white and black detector coatings.

Fig. 14
Fig. 14

Typical field of view of wide-field radiometer.

Fig. 15
Fig. 15

Representative temperatures of “black” detector viewing simulated earth for several housing temperatures.

Fig. 16
Fig. 16

Horizon pulse generator.

Fig. 17
Fig. 17

Telemetered record of horizon-pulse generator.

Tables (1)

Tables Icon

Table I Summary of lenses, optical filters, and spectral regions for five-channel radiometer.